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Abstract

This paper introduces a new out-of-sample forecasting methodology for monthly mar-
ket returns using the variance risk premium (VRP) that is both statistically and eco-
nomically significant. This methodology is motivated by the ‘beta representation,’ which
implies that the market risk premium is related to the price of variance risk by the variance
risk exposure. Hence, when the slope of the contemporaneous regression of market returns
on variance innovation is larger, future returns are more sharply related to the current
VRP. Also, predictions are more accurate when market returns are highly correlated to
variance shocks.
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1. Introduction

Whether market returns are predictable using public information is of interest to both

practitioners and academics. Although studies show that a number of variables can forecast

future market returns, several problems have also been observed. First, predictive relationships

appear to change over time, with some variables being successful in certain periods (Fama

and French, 1988a) or at specific periods of the business cycle (Dangl and Halling, 2012).

Second, predictors that perform well in sample often fail out of sample (Goyal and Welch,

2008; Campbell and Thompson, 2008). Lastly, return predictions typically perform worse for

shorter horizons (Fama and French, 1988a), with many well-known predictors failing to forecast

returns at the horizons below six months. Statistical inference on long-horizon predictions is

less reliable, raising concerns that some findings could be spurious.1

A recent study by Bollerslev, Tauchen, and Zhou (2009) suggests that even monthly or

quarterly market returns are predictable by the one-month variance risk premium (VRP),

measured as the difference between option-implied variance and realized variance. They report

a positive and statistically significant slope coefficient for the regression

Rm,t+1 = β0 + βpV RPt + εt+1, (1)

where Rm,t+1 is the leading excess market return. Theoretically, the VRP is the price of

variance risk and is commonly interpreted as a proxy of time-varying aggregate risk aversion2.

In this context, the VRP is considered to embed critical information about the moments of the

stochastic discount factor that is also useful in explaining variation in the market risk premium.

This paper proposes a new out-of-sample approach to monthly return predictions using

the VRP that performs well both in terms of statistical and economic significance. The new

methodology generates an out-of-sample R-squared of 6% – 8% that is highly statistically

significant, and a trading strategy produces a 0.13 gain in the annual Sharpe ratio.

1See, for example, Hodrick (1992), Stambaugh (1999), Ang and Bekaert (2007), and Pastor and Stambaugh
(2009).

2See, for example, Todorov (2010), Drechsler and Yaron (2011), Bekaert, Hoerova, and LoDuca (2013), and
Bekaert and Hoerova (2014), among others.
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The new methodology is derived from two theoretical observations. First, the one-month

market risk premium should be related to the VRP by the market’s exposure to variance risk.

This logic follows intuitively from what is known as the “beta representation,” i.e., that the risk

premium of an asset is related to the price of risk by the size of risk exposure. Empirically, this

implies that the slope coefficient of the monthly predictive regression of (1) can be replaced by

the market’s exposure to variance risk. Empirically, the exposure (βv,t) can be estimated by

the slope of the contemporaneous regression of market returns on the unexpected changes in

realized variance (RV):

Rm,t = βv,0 + βv(RVt − Et−1[RVt]) + εo,t. (2)

In fact, in some respects, this estimate is far superior to the slope obtained in the traditional

manner in which the predictive regression (1) is estimated directly.

The second observation is that when variance risk is responsible for a larger fraction of

market risk, the VRP should explain a greater share of the market risk premium. When

market risk is decomposed into two parts – a variance-related component and an unrelated

component – the combination of the beta and the VRP should exactly explain the market risk

premium due to the variance-related component. Empirically, this observation implies that the

return predictability of the VRP would strongly depend on the size of the so-called “leverage

effect,” the negative relationship between market returns and variance innovation.

The traditional way of forming an out-of-sample forecast is by running the predictive re-

gression (1) on a rolling basis for a relatively long sample. The estimated coefficients of the

predictive regression are then used to form a one-step-ahead out-of-sample forecast. This tra-

ditional methodology relies on the assumption that the predictive relation remains relatively

stable for an extended amount of time, so that past values of the predictive slope provide a

reasonably good approximation of the predictive relationship today. However, as noted in the

first paragraph, studies suggest that predictive relationships change over time. To be adaptive

to time-varying predictive relation, we need a shorter estimation period. However, this may
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also be problematic since reducing the estimation period will increase the estimation error of

the coefficients.

The new out-of-sample prediction methodology proposed in this paper rests on the close

equivalence of the variance risk exposure and the predictive slope. The new approach directly

uses the contemporaneous variance beta (βv,t) in place of the predictive beta (βp). As both

returns and realized variances are available at the daily frequency, the contemporaneous rela-

tionship can be estimated on a monthly basis using observations from the first to the last day of

the month. The size of the slope can then be multiplied by the VRP to form a return forecast

for the following month.

This new methodology is potentially superior for several reasons. First, the contempora-

neous regression of returns on variance innovations has a much higher R2 compared to that

of the traditional predictive regressions. A higher R2 implies that the coefficients used for the

out-of-sample predictions are estimated much more accurately. Moreover, the new approach

only uses the most recent month of data to determine the parameters. Hence, the proposed

out-of-sample forecast methodology is applicable even when economic conditions change rapidly

over time, due to a much shorter estimation period.

The empirical section of this paper shows that the new approach strictly outperforms the tra-

ditional way of return forecasting at the monthly horizon. In particular, the new approach pre-

dicts one-month market returns in a statistically and economically significant manner. Specifi-

cally, the traditional approach, which requires running a series of rolling predictive regressions,

are unable to produce accurate forecasts of one-month returns. Across multiple VRP measures

considered, some of the out-of-sample R2s are positive (-0.8% – 5.2%), but they are all far from

being statistically significant. However, when we combine the VRP with the contemporaneous

variance beta of the market, the R2s are always much higher (6.1% – 8.4%) and the correspond-

ing Wald statistics are always statistically significant. These results are robust regardless of

whether a constant or zero premium on the orthogonal component is assumed. Finally, there

is a gain of more than 0.13 (21% increase) in the annual Sharpe ratio and 4% (100% increase)

in the certainty equivalent when forming a trading strategy based on the new approach.
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Furthermore, the out-of-sample predictive power of the VRP depends strongly on the degree

of correlation between market returns and variance innovations. When correlations are highly

negative, VRP-based forecasts explain a considerable share of future market returns. On the

contrary, when correlations are close to zero, market returns are essentially unpredictable by

the VRP. The out-of-sample R2s of the traditional approach is between 6.8% and 20.7% during

months in which the price and variance closely move together but decrease to negative numbers

when they are unrelated. When combining the VRP with the contemporaneous beta, the gap

between the high and low periods slightly decreases, but the out-of-sample R2s are always higher

when the correlations are more negative. This is in part because the contemporaneous beta

already embeds information about the contemporaneous return-variance correlation. These

results imply that the VRP provides more information about the market risk premium when

returns and variance innovations move more closely together.

The in-sample results are also consistent with the hypothesis. As anticipated, the predictive

beta estimated from in-sample regressions decreases in the contemporaneous variance beta. On

average, a single unit decline in the contemporaneous beta leads to an approximate increase

of 0.6 – 0.9 unit in the one-month predictive beta. The predictive power also depends on the

size of the correlations. The in-sample R2 of one-month predictions ranges from 11.7% – 17.9%

during periods when market returns and variance innovations are highly correlated, compared

to 0.4% – 2.7% when the correlations are close to zero.

The ability to apply the new methodology and directly estimate the contribution of variance

risk to the market risk premium follows from three unique characteristics of the VRP. Firstly,

unlike many other predictors that are merely related to some price of risk in an unknown

manner, the VRP precisely measures the price of variance risk. Moreover, the underlying

risk factor, namely unexpected changes in market variance, is estimable relatively accurately

using high-frequency data. Therefore, the market’s exposure to variance risk is also observable,

albeit with some estimation error. Finally, variance risk comprises a large part of the variation

in market returns. A strong negative relation means that the observable component is likely to

be an essential element of the market risk premium.
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Related Literature

This paper is related to at least four different areas of research. That the predictive power of

the VRP might be related to the size of the leverage effect has also been hypothesized in part

by Carr and Wu (2016). Bandi and Reno (2016) investigate whether there is a common shock

in returns and volatility, co-jumps, that both explains a part of the market risk premium and

the VRP. However, to my knowledge, this is the first paper that formally tests the relation

between the leverage effect and the return predictability of the VRP.

This paper is closely related to a strand of research that studies time-varying return pre-

dictability. For example, Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012)

find that the power of well-known return predictors is business cycle-dependent, and that the

market is mainly predictable only during recessions3. Furthermore, Lettau and Van Nieuwer-

burgh (2008) argue that there may be shifts from the steady state, which makes the in-sample

coefficients too unstable to use for out-of-sample forecasts. Johannes, Korteweg, and Polson

(2014) also show that the predictive coefficients are time-varying. Based on the idea that the

predictive relation changes over time, Rapach, Strauss, and Zhou (2010) suggest combining

multiple predictors to form an optimal forecast. These papers mainly study the time-varying

predictability of valuation ratios (e.g., dividend yields, P/D, P/E ratio), which are known to

predict returns at longer horizons. This paper focuses on the VRP, which predicts market

returns over shorter horizons.

This paper also contributes to the literature that investigates the role of the price of variance

risk across various asset classes. Martin and Wagner (2016) claim that a combination of index

option implied variances is a tight lower bound of the equity risk premium. Bollerslev, Xu, and

Zhou (2015b) consider predicting dividend growth and the equity premium jointly, using the

VRP as one of the predictors. Also, option prices of different underlying assets are often used

to predict asset returns of different classes. Londono (2014) and Bollerslev, Marrone, Xu, and

Zhou (2014) study the predictive power of the VRP in an international context. Londono and

Zhou (2017) build a variance risk premium measure from currency options and show that both

the equity VRP and the currency variance risk premium is a determinant of the cross-section of

3See also Garcia (2013), Chen (2009), Lustig, Roussanov, and Verdelhan (2014), and Cujean and Hasler
(2017) among others.
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stock returns. Applications of the variance risk premium to different asset markets also include

studies by Wang, Zhou, and Zhou (2013) (credit default swaps) and Choi, Mueller, and Vedolin

(2017) (bonds). Returns from various assets are often predicted by the same underlying asset

of options in which the risk premium is computed. However, the present paper suggests that

this need not be the case, as long as the corresponding asset is exposed to variance risk of the

U.S. stock market.

It is also common to use downside risk as a return predictor. This paper is potentially

related because the variance beta is related to market skewness, as they are different variations

of the third moment. However, this paper is slightly different since the beta has a different

role. It helps to identify when the VRP should be useful as a return predictor. For example,

Kelly and Jiang (2014) propose a downside risk measure that predicts market returns. Feunou,

Jahan-Parvar, and Okou (2017) and Bollerslev, Todorov, and Xu (2015a) suggest that it is the

downside risk portion of variance risk that mostly contributes to return predictability. Carr and

Wu (2016) propose an alternative measure of the VRP using an option volatility surface that

better predicts market returns. Bekaert and Hoerova (2014) decompose the VIX index into

two parts, one that predicts market returns and the other that proxies for financial instability.

Chen, Joslin, and Ni (2016) argue that increased financial intermediary constraints, measured

using trading activities of deep out-of-the-money puts, lead to a higher risk premium.
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2. The Variance Risk Premium and the Expected Market

Returns

In stochastic discount factor (SDF) representation, the risk premium on one-month inte-

grated market variance, the so-called variance risk premium (VRP), can be expressed as4

V RPT = CovT

(
SDFT,T+1,

∫ T+1

T

dVt

)
≈ EQ

T

[∫ T+1

T

dVt

]
− ET

[∫ T+1

T

dVt

]
, (3)

where SDFT,T+1 is the SDF over the same one-month horizon from T. The risk-neutral expec-

tation is commonly measured using the square of the Volatility Index (VIX), available from

the Chicago Board Options Exchange (CBOE). The VIX is the standard deviation of S&P

500 Index returns under the risk-neutral measure, computed using the prices of index options.

It is then interpolated so that it matches the expectation of one-month integrated variance.

Consequently, choosing the same horizon for the second component of Equation (3) is a natural

choice. The difference also has the interpretation of unit price of variance risk.

In a recent paper, Bollerslev et al. (2009) find that the VRP predicts short-term market

returns. They run predictive regressions of monthly, quarterly, and semi-annual market returns

(Rm,t+1) on the V RPt,

Rm,t+1 = β0 + βpV RPt + εt+1, (4)

and report a positive and statistically significant βp. The common interpretation is that the

VRP is a proxy for time-varying risk aversion (Todorov, 2010; Bollerslev, Gibson, and Zhou,

2011; Bekaert et al., 2013), parameter uncertainty (Bollerslev et al., 2009) or economic uncer-

tainty (Drechsler and Yaron, 2011), so that the risk premium would change as the moments of

the SDF varies.

4Note the “+” sign in front of the SDF. Although the VRP can be defined as the difference between the
real-world measure and the risk-neutral measure, I follow the sign convention of Bollerslev et al. (2009). Since
the risk-neutral expectation of the variance is typically higher than the actual realized variance, the VRP is
positive for the most of the sample. The approximation comes from ignoring the effect of risk-free rates.
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However, besides being a short-term return predictor, the VRP is unique for several other

reasons. One is that it is actually a price of risk, rather than a variable that merely encodes

information about risk prices (e.g., the dividend yield) in an unknown manner. Second, the

factor on which it is based, namely variance innovations, can be observed with a tolerable

amount of estimation error. Most importantly, those variance innovations are highly correlated

with market returns, which means that the market has substantial exposure to variance risk.

Prior research often ignores the important aspect of the equity market, namely that the

market variance and price tend to move in the opposite direction. One well-known explanation,

known as the “leverage” effect (Black, 1976; Christie, 1982), hypothesizes that an adverse shock

in the market causes the overall leverage to increase, leading to higher volatility. Hence, the

level of variance and price are negatively related. A more popular explanation, known as

“volatility feedback,” is that risk-averse investors require a higher premium for being in a high-

volatility state. Therefore, investors demand more compensation in the future when market

variance increases unexpectedly. Since a higher risk premium implies lower values today, prices

must drop when variance increases (Pindyck, 1984; French, Schwert, and Stambaugh, 1987;

Bollerslev, Litvinova, and Tauchen, 2006).

This negative relationship implies that the market portfolio is subject to variance risk, which

naturally suggests that VRP is the premium on an important source of aggregate variation in the

stock market that also affects the required return of the market. Moreover, since the VRP can

be measured relatively accurately, a fraction of the market risk premium can be inferred from

the VRP, essentially in real time. The following simple model demonstrates this relationship

in detail.

2.1. A Simple Model

To build some intuition, consider a stochastic volatility model in which the correlation ρt < 0

between market returns and changes in market variance is assumed to be time-varying. When
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St is the price of the aggregate market portfolio, approximately represented by the S&P 500

Index, and Vt is its variance, we have

dSt
St

= µtdt+
√
Vt(ρtdW

v
t +

√
1− ρ2tdW o

t ) (5)

dVt = θtdt+ σvdW
v
t . (6)

By construction, the two Brownian motions dW v
t and dW o

t are independent. These processes

assume that the return and variance process follow a bivariate Gaussian process with a negative

correlation. The drifts are not specified but are assumed to be time-varying. The volatility of

the variance is assumed to be constant, but can be time-varying. Solving the first equation in

terms of variance innovations and dW o
t yields

dSt
St

= µtdt+ ρt

√
Vt
σv

(dVt − θtdt) +
√

(1− ρ2t )VtdW o
t . (7)

This two-factor structure indicates that market movements can be decomposed into two

parts. First, market prices can vary as market variance moves. In the inter-temporal model

of Merton (1973), for example, an unexpected increase in the market variance must directly

lead to lower returns. The second part reflects price movements due to all other reasons. They

may include shocks from the real economy, such as production or consumption shocks but

unrelated to market variance shocks. By rotational indeterminacy, one can always transform

the other sources of variation into a variable that is orthogonal to the first one. For simplicity,

I refer to the second term as the ‘orthogonal’ component and the premium associated with this

component as the orthogonal premium.

The SDF representation can be used to match the one-month VRP with the market risk

premium of the same interval. The monthly market risk premium can be expressed as,

CovT

(
−SDFT,T+1,

∫ T+1

T

dSt
St

)
= −ρT

VT
σv

CovT

(
SDFT,T+1,

∫ T+1

T

dVt

)
−
√

(1− ρ2T )VT CovT

(
SDFT,T+1,

∫ T+1

T

dW o
t

)
. (8)
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Equation (8) is the key to understanding my approach and represents the relationship

between the two premia in continuous time. This equation suggests that the market risk

premium can be decomposed into a linear combination of two prices of risk. The first part

governs how the one-month VRP relates to the market risk premium. Notably, the size of

the slope that connects the VRP to the market risk premium (−ρt Vtσv ) is the negative of the

market’s exposure to variance risk. When we run a simple linear regression of market returns

on its contemporaneous variance shocks, this term is exactly the slope of this regression. Thus,

the relation between returns and unexpected changes in variance determines the slope that

connects the VRP and future market returns.

In fact, the slope measures how the market responds to unexpected changes in market

variance. From the perspective of an investor who holds the market portfolio and wants to

reduce exposure to variance risk, the first component of Equation (8) represents the market

risk premium due to a part that can be hedged using a variance swap. A variance swap

exchanges future realized variance for a notional amount. Carr and Wu (2009) show that the

risk-neutral expectation of variance is the notional amount of the swap. Therefore, the VRP is

essentially the expected unit cost of variance risk, and the contemporaneous variance beta is the

number of swap contracts required to hedge the market portfolio against variance movement.

The combination is what the investor needs to pay to hedge variance risk.

The second term of Equation (8) represents how the price of the orthogonal component

relates to the market premium. The orthogonal premium could potentially affect how the VRP

and the market risk premium are related because the VRP and the orthogonal premium could

also be related. For example, an increase in aggregate risk aversion could both affect the VRP

and the orthogonal premium simultaneously. Therefore, depending on the degree to which the

two premia are linked, it is possible that the orthogonal premium modifies how the VRP relates

to the market risk premium.

There are at least two reasons to believe that orthogonal risk is largely unrelated to the VRP.

First, while the predictive power of the VRP decreases as the forecast horizon increases, the

opposite is true for other well-known predictors, such as the dividend yield (Fama and French,

1988a), E/P ratio (Campbell and Shiller, 1988), term spread (Campbell, 1987), and cay (Lettau
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and Ludvigsen, 2001). Moreover, these predictors tend to perform well during recessions. For

example, Rapach et al. (2010), Henkel et al. (2011) and Dangl and Halling (2012) demonstrate

that the predictive power is strong only during recessions. As will be shown in the following

section, these periods do not coincide with periods in which is a strong negative relation between

market returns and market variance, which is when the VRP has its strongest predictive power.

Although not entirely realistic, there are at least two circumstances where the linear rela-

tionship between the VRP and the market premium would be exact. Under these assumptions,

the slope that governs the relationship between the premia is exactly the slope that connects

returns to variance innovations. The first case is when the orthogonal component is unpriced.

The other is when the orthogonal premium is uncorrelated with the VRP.

2.2. Empirical Implications

The remainder of this paper thoroughly discusses several important aspects of the simple

model presented. First, the slope that determines the relation between the short-term market

risk premium and the risk premium on market variance is largely determined by the amount of

variance risk present in the market portfolio. We can run a contemporaneous regression of the

daily excess market returns on the unexpected change in realized variance (RV) over a fixed

interval as

Rm,t = βv,0 + βv(RVt − Et−1[RVt]) + εo,t. (9)

The slope of this regression measures how much the market reacts to unexpected changes in

market variance. This is also the coefficient on the VRP in (8). The equation that relates the

VRP to the market risk premium can then be represented as

ET [Rm,T+1] = −βv,tV RPT +OT , (10)
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where OT is the premium due to the orthogonal component5. The orthogonal premium is

theoretically equivalent to
√
VT (1− ρ2T ) CovT (SDFT,T+1,

∫ T+1

T
dW o

t ) from (8).

Second, the equation that describes the relation between the VRP and the market risk

premium suggests that we can predict market returns more accurately when the index and

the variance of returns move closely together. The model indicates that the proportion of the

total market variation related to variance risk is ρ2t . If the orthogonal premium is unpriced or

unrelated to the VRP, the orthogonal premium will appear as noise in a predictive regression

in which the VRP is the sole predictor. If the premium is priced and related to the VRP, this

premium will bias the predictive beta. In either case, as the contemporaneous correlation (ρt)

gets closer to zero, predictions will become less accurate. On the other hand, when correlations

are close to −1, the VRP should almost entirely identify the market risk premium. One way to

understand this is to consider variance swaps discussed earlier. A variance swap can perfectly

hedge the market portfolio. Under no arbitrage, a perfectly hedged position should not generate

anything more than the risk-free rate. Conclusively, the predictive R2 should depend on the

size of the correlation between market returns and variance shocks.

These two relations are extremely useful when forecasting market returns out of sample.

As discussed above, accurate predictions of market returns are extremely hard. In-sample R2s

rarely exceed 5% for most common predictors (Goyal and Welch, 2008) at the annual horizon. A

low R2 also implies that the parameter estimates are likely to be more inaccurate, which induces

poor out-of-sample forecasts. To compensate for the high percentage of noise in returns data,

we require an extended estimation sample. However, this is only advisable when we assume

that the predictive relation remains constant.

However, recent research suggests that the predictive relationship does not remain constant

over time. As noted above, for valuation ratios such as the dividend yields, the predictive

power is particularly higher during recessions. Also, Johannes et al. (2014) argue that the

parameters that govern the predictive relation are time-varying. As the traditional way of

5The relationship between the one-month market risk premium and the VRP can also be roughly observed
by taking expectations on both sides of the contemporaneous regression with respect to the risk-neutral measure
and the real-world measure and subtracting one from the other. The one-month risk premium is exactly the
sum of the premium on the two components.
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using predictive regressions assumes a constant predictive relationship, the forecasts can be

particularly misleading when the relation varies rapidly over time, or when there is a structural

break. The econometrician may attempt to address parameter instability by using a short

estimation window. However, when the first-stage estimation period is too short, as mentioned,

the coefficients of the first-stage predictive regression will be imprecise.

There is an alternative approach that can be used specifically for the VRP, which I refer

to as the “contemporaneous beta approach.” The method is based on the close relationship

between the predictive and contemporaneous betas and implemented by using the beta of the

contemporaneous regression in place of the predictive beta to form the out-of-sample forecast.

There are two reasons why the contemporaneous beta could potentially be a much more

accurate estimate than the rolling-window predictive beta. First of all, the contemporaneous

relation between returns and changes in variance is much stronger than the predictive relation-

ship between the VRP and future returns. While the predictive R2s hardly exceed 5%, the

average of the R2s of the contemporaneous regression is slightly above 15%.

Furthermore, both returns and estimates of realized variance are available at the daily

frequency. Being able to use data at a higher frequency implies that there is more data, which

no longer necessitates relying on an extended estimation period. Using a short estimation

period, such as a month, might be enough to generate a slope coefficient that is sufficiently

accurate to form an out-of-sample forecast. Depending on what we assume for the orthogonal

premium and variance forecast, it is essentially possible to get an estimate of the monthly equity

premium using a single month of data. Hence, this new approach can be used even when the

predictive relation changes rapidly over time.

Finally, a similar logic should also apply to asset classes other than the equity index. It

is not necessary that we use a VRP that is based on the asset whose returns we are trying

to predict. As long as those returns are correlated with changes in S&P 500 Index volatility,

the VRP should have some predictive power. Assets that are highly correlated with variance

innovations should be predictable with higher accuracy, and those that relate to changes in

market variance with a higher beta should be predictable using the VRP with a higher slope.
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The following sections examine supporting evidence that shows that the contemporaneous

and predictive relations for market returns are in fact closely connected.

3. Data and Estimation

Theoretically, the one-month VRP (of the S&P 500 Index) is the difference between the risk-

neutral expectation and the real-world expectation of one-month return variance. Although it is

relatively straightforward to infer the risk-neutral counterpart using the VIX2, estimation of the

real-world expectation is model-dependent and subject to specification error. Moreover, there

might be a mismatch in timing, for example, when we use the monthly averaged value for one

and the end-of-the-month value for the other. The mismatch could be especially problematic

when the market volatility is trending during a month. This section discusses how the VRP,

the contemporaneous betas (denoted by β̂v), and the correlations (denoted by ρ̂) are measured

from daily market returns and RVs.

3.1. Forecasting Variance

To estimate the VRP, selecting a good variance forecast model is important. As Bekaert and

Hoerova (2014) argue, the VRP’s ability to predict returns may depend on the particular model

used to compute the real-world expectation component. I use intra-day, high-frequency, return-

based RV to model the forecasts. It is known that high-frequency RV models have advantages

over standard generalized autoregressive conditional heteroscedasticity (GARCH) or stochastic

volatility (SV) models, which typically rely on daily returns. First, traditional GARCH or SV

models are somewhat difficult to estimate. Distributional assumptions are required for either

model. Moreover, RV-based models are known to outperform standard GARCH or SV models

when forecasting variance. This outperformance is partly possible because high-frequency data

enables us to measure the latent variance process more accurately. Finally, using RV allows us
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to fit complex multivariate models that capture the long memory feature of the latent variance

process6.

The high-frequency intraday trading data for the S&P 500 Index (and the S&P 100 Index)

is obtained from Tickdata. The data is available from 1983, but this paper only requires the

data between 1989 (1985) and 2016 since the first component of the VRP, the VIX (VXO) is

only available from 1990 (1986). Following Gerd, Lunde, Shephard, and Sheppard (2009), RV is

computed by first calculating squared log returns from the last tick of each five-minute interval.

A subsampling scheme at one-minute intervals (Zhang, Mykland, and Ait-Sahalia, 2005) is

used to reduce microstructure noise. Hansen and Lunde (2006), for example, study the impact

of subsampling and note that, theoretically, it is always beneficial in reducing microstructure

noise. I rescale the RVs to the monthly level so that they match the variance of a month.

The constructed RV series is then used to compute the variance forecasts. Corsi (2009)

proposes a Heterogeneous Autoregressive Realized Volatility (HAR-RV) model. The model

assumes that the predicted value of volatility is linear in its autoregressive components – daily,

weekly and monthly realized volatility. By distinguishing a long-run monthly component from

the short-run daily component, the model performs well in capturing short-term variation in

the volatility process together with the long memory feature of volatility.

The market variance of day τ + k, for any k ≥ 1 can be forecasted on day τ using past

values of RVs by running the following regression:

RVτ+k = a0 + adRVτ + aw(
4∑
j=0

RVτ−j) + am(
21∑
j=0

RVτ−j) + φ1,τ+k (11)

To avoid confusion, I use τ for variables that is in daily frequency and t subscript for a variable

that is in monthly frequency.

6Under several conditions, Andersen, Bollerslev, Diebold, and Labys (2001) show that the RV converges
in probability to the true variance. Andersen and Bollerslev (1997) indicate that variance estimate based
on intraday returns provide information about long-run volatility dependencies. For advantages using high
frequency based RV see Andersen, Bollerslev, Diebold, and Labys (2003). Also see Andersen, Bollerslev, and
Diebold (2007), Chen and Ghysels (2011), and Busch, Christensen, and Nielsen (2011) among others for details
about the performances and extensions of the heterogeneous autoregressive type models.
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The one-day forecast of the daily RV (R̂V τ+1|τ ) can then be constructed using the loadings

on the daily, weekly and monthly components. The forecast of monthly variance at day τ

(R̂V τ+1,τ+22|τ ) is estimated by averaging the 22 daily forecast (k = 1, . . . , 22)7. The forecasts

are estimated using daily observations on a twelve-month rolling window to account for the

possibility that the forecast relation changes over time.

3.2. Estimation of the VRP

The VRP is measured by taking the difference between the square of VIX and the monthly

forecast of RV. While the end-of-month values of the VIX squared is typically used for the first

component, in the literature, the second component is estimated by using a forecast model on

the RV computed by summing up daily observations over the entire month.8 This approach

suffers from a timing mismatch, especially when the variance is trending during the most recent

month. While the VIX2 reflects changes in market variance during a month, the above forecast

of monthly variance does not account for possible changes in market variance during the most

recent month. Even a small trend in market variance may have a significant impact on the

VRP estimate as a return predictor of short-term market returns, such as for a single month.

Two direct solutions are implementable to minimize any volatility trends affecting the VRP.

We can either choose to average both of these values over the month or use the end-of-month

values for both components. Averaging over daily values reduces possible estimation error or

the influence of a single observation, but it may not reflect the most up-to-date information. On

the other hand, using the end-of-month value reflects more recent information, but is more likely

to be subject to estimation error. Following the literature, I estimate the VRP as the difference

between the VIX2 and the 22-day cumulative forecast of daily realized variance. However, to

deal with the mismatch, I either average the daily observations or take the end-of-month values.

These two measures are parametric and denoted by VRPP and VRPPE , respectively.

7Note that this is equivalent to running one predictive regression with the sum of the 22 dependent variables,
but the difference is what we can use in a single regression. On day τ , the method I use uses all past RVs up
until day τ − 1, while having the sum of 22 RVs can only use all data up to τ − 22.

8See, for example, Bollerslev et al. (2009), Bekaert and Hoerova (2014), and Gonzalez-Urteaga and Rubio
(2016) among others.
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VRPP ,t =
∑
τ∈t

(VIX2
τ

252
−
R̂V τ+1,τ+22|τ

22

)
(12)

VRPPE ,t =
VIX2

m(t)

12
− R̂V m(t)+1,m(t)+22|m(t) (13)

where m(t) is the last trading day of month t. Both of the variance components are rescaled

to match the one-month variance. While this choices affects the predictive performance when

we run a simple predictive regression, I show that the key results of this paper hold regardless

of the timing of the measurement.

To ensure that the empirical results are not dependent on a particular model, I supplement

these two measures with a third non-parametric one. Denoted by VRPN , the non-parametric

VRP is the difference between the scaled VIX2 and the historical RV, both averaged over the

entire month. This VRP is similar to the one used by Bollerslev et al. (2009), who take the

difference between the end-of-month value of the implied variance and the monthly RV. Here, I

use the monthly average for both to avoid the possibility of volatility trends affecting the VRP.

Figure 1 compares the time series of the three VRPs used in this paper. They are highly

correlated to each other, but the parametric one is more persistent than the non-parametric

VRP, and between the two parametric measures, the VRP using the monthly average tends

to be more persistent than the one observed at the end of the month. Also acknowledged by

previous studies (e.g., Bali and Zhou (2016)), there is a negative spike during the Financial

Crisis of September 2008. This is because RV was unexpectedly high at this time and reverted

to its original level swiftly. The VIX did not increase as much during that period because,

presumably, part of the spike was regarded as a jump in the index. Therefore, the forecast

models did not appear to have captured the strength of the mean reversion that was observed.
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3.3. Estimation of the Contemporaneous Betas and Correlations

The daily innovation of market variance is calculated by computing the unexpected changes

in RV scaled so that it matches the one-month interval. Then, the monthly contemporaneous

beta is estimated from the regression of market returns on variance innovations, using only

observations that belong to that particular month.

Rm,τ = βv,0,t + βv,t(RVτ − R̂V τ |τ−1) + ετ (14)

The choice of the estimation window follows that of Ang, Hodrick, Xing, and Zhang (2006) and

Chang, Christoffersen, and Jacobs (2013). They also use a single month of data to estimate

the variance betas for individual stocks. One concern is that the variance of the error term ετ

is likely to be correlated with the explanatory variable. To deal with possible heteroscedastic-

ity, I consider weighted least squares (WLS) in addition to ordinary least squares (OLS). To

distinguish them from each other, I use β̂v to denote the OLS estimates and β̂v,WLS to denote

the WLS estimates.

The contemporaneous correlation (ρ̂t) is the correlation between the two variables in the

above equation. The correlations are closely connected to the betas because they are transfor-

mations of each other.

ρ̂t = β̂v,t ×
σ̂t(RVτ − R̂V τ |τ−1)

σ̂t(Rm,τ )
(15)

Because each regression is based on observations from a single month, the monthly series of

betas and a correlations are estimated from non-overlapping samples.

The time-series of the betas is provided in Figure 2 and that of the correlations is in Figure 3.

The dotted line shows the time series of the one-month estimates. The three-month estimates

in solid lines supplement the one-month estimates.9. Also in Figure 2, both the WLS (top) and

OLS (bottom) betas are provided in a separate figure.

9The three-month betas are estimated three-month moving averages, and the three-month estimates are
computed by taking the moving average of each component in Equation (15) separately
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As can be observed from these plots, both the betas and correlations are quite volatile.

Several other remarks are worth noting. First, the contemporaneous correlations were more

negative during the second half of the sample (2004–2016) with a coefficient of -0.308 as opposed

to -0.229 during the first half of the sample. The difference in the size of the negative correlation

indicates that the VRP may be more effective as a return predictor during the second half of

the sample. These are also times when the fluctuations in the betas are better observed. Third,

especially for the post-2000 period, the leverage effect becomes weaker several months after

negative market shocks. These shocks include the 1997 Asian Crisis, dot-com burst of 2001–

2002, the Financial Crisis of 2008, and the Shanghai market crash of 2015. However, some

of the positive movements (e.g., 2004–2005 and 2013) in betas do not follow negative market

shocks. These are more likely to be times when the market rebounded following a negative

shock, and during these times, the VRP did not provide high-quality information about the

short-term market risk premium.

3.4. Summary Statistics

Table 1 provides summary statistics for the key variables of interest. These variables include

RV, option-implied variance, three measures of the VRP, the contemporaneous variance betas,

and the contemporaneous correlation. The study period is from January of 1990 to December

of 2016, which is restricted by the availability of the VIX. There are a total of 324 months, 37

of which the NBER classifies as recessions. There are three recession periods, one in 1990–1991,

another in 2001, and the last one in 2008–2009.

The first two columns of the table summarize the means and standard deviations over the

entire sample. Then, the next columns summarize the statistics for several subsamples. I

first divide the sample into two sub-periods, one in which the contemporaneous correlation is

greater than and the other in which it is less than the median of the entire sample. The table

only reports the statistics for the “greater” periods. This classification is useful for testing

whether the key results of this paper is a result of the quadratic predictive relation. If there is

a quadratic predictive relation, a higher predictive slope would be observed during times with
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a high VRP. The question is whether the VRP is higher when the contemporaneous correlation

between returns and variance shocks are more negative. As the summary statistics suggest, the

level of the variance and the VRPs are similar regardless of whether the correlation is higher

or lower than the time-series median. Hence, the time-varying return predictability is unlikely

to be driven by a quadratic predictive relation.

Recent studies suggest that market returns can be predicted better during recession periods.

For example, Pesaran and Timmermann (1995), Henkel et al. (2011) and Dangl and Halling

(2012) argue that the performance of traditional predictors, such as the dividend yield, is strong

only during recessions. The set of predictors they consider does not include the VRP. To rule

out the possibility that the contemporaneous correlation is not merely a proxy for business

cycles, I ask whether the correlations are more negative during recession periods.

The next two columns of Table 1 show descriptive statistics of the variables during NBER

recession periods. The statistics show that contemporaneous correlations are not apparently

more negative during recessions. Two implications are worth noting. First, the statistics

show that the findings of this paper are not implied by the work discussed above, in that I

am not showing a pattern in predictability that is related to business cycles. As we will see

in the next several sections, the predictability of the VRP is higher when volatility feedback

is stronger. However, the statistics suggest that these are not necessarily the periods where

traditional predictors tend to perform well. Second, as mentioned earlier, the predictability of

the VRP is stronger for short-horizon returns while other common predictors are stronger over

longer horizons. These two facts suggest that the empirical findings of this paper are somewhat

independent of earlier findings that return predictability tends to be stronger during recessions.

Also, they strengthen the hypothesis that the market risk premium can be decomposed at least

by two parts discernible from each other.

The last column of the table summarizes the first-order serial correlations of these variables.

Overall, the moderate level of these serial correlations suggests that these variables are station-

ary. The autocorrelations of the contemporaneous betas are slightly higher than 0.2, and that

of the contemporaneous correlation is slightly above 0.1. By construction, the autocorrelation
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of the over-lapping three-month OLS betas and correlations are higher, with 0.79 and 0.66,

respectively (not reported in the table).

To gain some insight into what drives the negative relationship between market returns and

variance innovations, Panel B of the table summarizes the contemporaneous and predictive

correlation between the leverage estimates and several other variables of interest. I compare

the estimates with monthly contemporaneous market returns and annual lagged returns, the

variance of the market, and several measures of downside risk.

First, the table suggests that the leverage effect tend to be stronger following positive shocks

in the market. This result is consistent with the earlier argument that the VRP tends to be less

informative during bad economic times. Also, both betas and correlations are more negative

when VIX is low. The implications are consistent with Johnson (2017), who suggest that

the VRP tends to be a noisy measure of market risk premium during high volatility periods.

Generally, VRP should be most informative about the expected market returns during low

volatility and high valuation times.

Second, the leverage effect is stronger when there is a positive trend in market variance.

That is, the VRP is likely to be more informative when variance increases. The next line of

the panel directly shows this. Here, the VIX trend is defined as the difference between the VIX

at the end of the month and the average over the month. Overall, these two pieces of evidence

confirm that the VRP tend to be least informative when the market rebounds following a

negative shock.

I also compare these estimates with several proxies for downside risk. Downside risk may be

related to the leverage effect since when there is more downside risk, the market may be more

sensitive to small changes in the level of variance. I consider the SKEW index of CBOE, the tail

risk of Kelly and Jiang (2014) and the three VRPs. The table suggests that the leverage effect

is stronger when the market is more negatively skewed, but when the VRPs are low. Again, this

is consistent with the argument that the VRP is more informative during less volatile periods.
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4. Empirical Results on Out-of-sample Predictions

This section documents two novel and striking findings. First, the beta that explains the

predictive relationship is close to the negative of the contemporaneous beta. They are, in fact,

so close that the contemporaneous beta can be directly used in place of the predictive beta

for the out-of-sample forecast. Second, predictions perform better when the contemporaneous

correlation between market returns and variance innovations is more negative. The first part of

this section provides the main result of this paper, out-of-sample predictions. The performance

of possible trading strategies follows. The next section discusses in-sample prediction results.

I focus on one-month returns because the VRP is the premium over a one-month horizon.

Therefore, evaluating market returns at the same horizon is a natural choice, as suggested by the

model. There are also other reasons for doing so. The contemporaneous relation between return

and variance varies rapidly over time, as shown in Figure 2. Therefore, the contemporaneous

relationship estimated based on past data may not be valid over a much longer horizon.

4.1. Out-of-sample Predictions

The traditional approach to providing OOS forecasts of time T + 1 returns consists of two

stages. First, we run a predictive regression using the past k months of historical data (from

time T − k + 1 up to time T ) as

Rm,t = β0 + βpV RPt−1 + εt. (16)

We use the coefficient estimated at time T to forecast returns at time T+1. The one-step-ahead

predicted value of the excess market returns (R̂m,T+1|T ) is given as β̂0,T + β̂p,TV RPT .
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The next step is to evaluate the OOS predictive performance, for example using the OOS-

R2. To do so, Goyal and Welch (2008) and Campbell and Thompson (2008), among others,

compute the OOS-R2, defined as

1−
∑

t(R̂m,t+1|t −Rm,t+1)
2∑

t(Rm,t −Rm,t+1)2
, (17)

where Rm,t is the historical average of the market returns up to time t. Finally, we compute a

test statistic, for example, a Wald statistic, to test the significance of the predictor. Diebold

and Mariano (1995) provide a formal test for such OOS prediction errors. Giacomini and White

(2006) extend the OOS test and propose a Wald test that is valid for testing nested models.

The Wald statistic is given as

W = T

(
T−1

T∑
t=1

∆Lt+1

)
Ω̂−1

(
T−1

T∑
t=1

∆Lt+1

)
, (18)

where ∆Lt+1 = (Rm,t−Rm,t+1)
2−(R̂m,t+1|t−Rm,t+1)

2 and Ω̂ = 1
T

∑T
t=1(∆Lt+1−∆L)2. Asymp-

totically, this Wald statistic follows a Chi-square distribution with degrees of freedom equal to

the difference in the number of predictors.

Although this approach is commonly used, its performance may depend on which estimation

period k the researcher chooses. This choice is particularly sensitive when predicting returns

since the R2 of the in-sample predictive regression is low most of the time. A low R2 can be

problematic when forming out-of-sample predictions since the standard errors of the regression

is negatively related to the R2. To have an accurate estimate, we need a longer sample (k) for the

in-sample estimation10. However, the horizon cannot be too long if the predictive relationship

is thought to change rapidly over time.

10The standard deviation of the prediction error in a simple linear regression is,

MSPE = σ

√∑
t(Rm,t − R̂m,t)2

k
,

where σ2 = Var(εp,t). The MSPE is equivalent to σ

√
(1−R2)V̂ar(Rm,t).
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The new approach deviates in one critical dimension. The OOS forecast of month T + 1

returns is formed by using the contemporaneous variance beta from month T in place of the

predictive beta estimated over the past k periods. For the time being, I set the intercept of the

predictive relation equal to zero. I term this the “contemporaneous beta” approach because

it directly uses the contemporaneous betas (β̂v,T ) estimated from regressions of returns and

variance innovations. Recall that the market risk premium consists of two parts. The premium

that comes from the variance shock is equivalent to the product of the contemporaneous beta

and the VRP. The premium that originates from the orthogonal shock may also be related to

the VRP, but whether or how much it is related to the VRP is unknown. If either orthogonal

risk is unpriced or its price is unrelated to the VRP, we expect the market risk premium to be

related to the VRP with a slope that equals the contemporaneous beta.

The first OOS forecast is formed by multiplying the VRP with the negative of the contem-

poraneous beta. The one-step-ahead predicted value of market excess returns is then

R̂m,T+1|T = −β̂v,TV RPT . (19)

Since the betas are estimated from a single month of data, we only use the most up-to-date

information on the market. There are several benefits of doing this. Above all, the R2s of the

contemporaneous regressions, estimated using daily data, are typically higher than those of the

historical predictive regressions, estimated using monthly observations. A higher R2 allows us

to use a shorter time-period. Within a month, changes in economic conditions or structural

breaks may only affect the coefficients by a marginal amount. Also, since the contemporaneous

correlation is related to the strength of the predictive relationship, under the new approach, we

may only choose to use the information embedded in the VRP when the premium is likely to

be more informative about the market risk premium.

In the contemporaneous beta approach, the product of the negative variance risk exposure

and the VRP predicts the excess market returns with a zero intercept. This relation is based on

the assumption that the orthogonal component is either unpriced or is too noisy to determine

in the short-run. If the orthogonal component is priced, forming OOS forecasts based only on
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the VRP could result in poor forecasts of the equity risk premium. It is even possible that the

orthogonal premium is time-varying. The premium may be related to the VRP since both of

them are prices of risk that depend on aggregate risk aversion. If they are heavily related, the

contemporaneous beta may provide a biased estimate of the predictive slope.

Hence, it is possible that the orthogonal premium is explained by other well-known pre-

dictors of market returns, such as the dividend yields, that is related to a more persistent

component of the risk premium. Therefore, I consider a third approach, a combination of the

contemporaneous beta and traditional approaches. I use predictors of market returns that are

known to perform well. What I call the “hybrid approach” is designed such that the orthogonal

premium is allowed to be a linear function of common predictors. To do so, after estimating

the contemporaneous betas from a first-stage contemporaneous regression in each month, I run

a second regression

Rm,t+1 = −β̂v,tV RPt + δ0 + δ1
√

1− ρ̂2tXt + ηt+1 (20)

to find estimates of δ̂0 and δ̂1 on a rolling basis. Here, Xt can be any predictor of market

returns, including the VRP. Under this approach, the OOS forecast at time T is then,

R̂m,T+1|T = −β̂v,TV RPT + δ̂0 + δ̂1

√
1− ρ̂2TXT . (21)

The forecasts of the hybrid approach are intended to incorporate the risk premium associ-

ated with the orthogonal risk component in addition to the variance risk component. Since the

variance risk component is well-captured by the product of the exposure and the price of vari-

ance risk, the role of this additional predictor is limited to explaining the orthogonal premium.

The term in the square-root ensures that the predictors are weighted conditionally depending

on the relative size of the orthogonal component to total market risk.

It is possible that the orthogonal premium is not well-captured by any of the predictors

considered. There is also the possibility that the premium on orthogonal risk does not vary much

over time or even remain constant. Hence, I consider a restricted case of the above approach,
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where δ1 term is dropped. This particular case will be referred to as the contemporaneous beta

approach with an intercept.

Each of the OOS-R2 values is computed by comparing the performance of the one-step-ahead

prediction of the model and to the historical average. I use the rolling window of past ten years

data to compute the historical mean as a benchmark. As shown in the robustness section, the

results do not change much if the estimation period for the historical mean is restricted to a

shorter period, or when some of the pre-1990 sample is included.

Table 2 summarizes the OOS-R2s and the Wald statistics, along with p-values, for the

different methods discussed. I mainly consider the sample that starts from 1993 because the

traditional way of return forecasting requires that the estimates from in-sample regressions to

be used to form an OOS forecast. To show that the outperformance of the new methodology

is not driven by a short sample used for in-sample regressions, in the robustness section, I also

re-do the analysis using a sample that begins in 1998.

While Goyal and Welch (2008) show that returns are unpredictable OOS for most predictors

proposed, Campbell and Thompson (2008) conjecture that the results may look different if we

constrain the coefficients and slope of the predictive regressions. They show that the forecast

performance sometimes increases when we impose a constraint. Motivated by their study,

I impose a positivity constraint on the return forecasts for both the traditional approach of

return forecasting and the new proposed methodology. The forecast without the positivity

constraints is denoted by “Unconstrained” in the table, while the one with the constraint is

denoted by “Constrained” in the table.

When applying the traditional approach, the VRP predicts market returns with a slightly

positive OOS-R2. The non-parametric VRP has a slightly positive OOS-R2 of 1.0%. Consistent

with Bekaert and Hoerova (2014), the predictive performance of the VRP largely depends

on how the VRP is measured. The OOS-R2 is 0.2% when the VRP is measured using the

monthly average but increases to 5.2% when end-of-month values are used. The difference in

the performance is largely due to two extreme observations during the financial crisis. This is

because in September 2008 the VRP is estimated to be negative, which is followed by a large
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negative shock (-17.2%) in the index. Then, in October of 2008, there is a positive spike in

the VRP, which is followed by a negative shock (-7.8%) in the index. Although not reported

in the table, the gap among the OOS-R2s decreases to 2.0% (the R2s in between 1.6% and

3.6%), when these two observations are removed. The influence of the first outlier is confirmed

when we impose a positivity constraint in the forecast. The OOS-R2s decrease across all three

measures with the biggest impact on the parametric VRP measured at the end of the month.

Overall, despite sometimes having positive OOS-R2s, none of the predictions of the traditional

approach is statistically significant, even at the 10% level. The Wald statistics are statistically

insignificant, and we conclude that there is no predictability in monthly market returns.

However, the numbers look much different when we combine the contemporaneous beta

with the VRP. The results when we set the orthogonal premium to zero (“no intercept”) are

provided in Panel B-1. The OOS-R2 for the parametric VRP is 7.9%-8.4% if multiplied by

the WLS beta and 6.8%-8.5% if combined with the OLS beta, which is much higher than the

numbers of the traditional approach. For the non-parametric VRP, the OOS-R2 is 6.5% if

the WLS beta is used and 5.4% when the OLS beta is used. For any given combination of

the VRP and the beta estimates, the forecasts are at least 3% higher than the counterpart of

the traditional approach. Most of all, the Wald statistics are now mostly significant. All the

combinations considered are statistically significant at the 10% level. At the 5% level, five out

of six specifications are statistically significant. The prediction error is on average small, and it

varies little over time. These results suggest that using the new proposed approach, predicting

one-month market returns in a statistically significant manner is possible, even out of sample.

Using the constrained estimate does not change the result. The OOS-R2s decrease by a small

amount, but the Wald statistics increase even further, leading to statistical significance at 1%

across four out of six combinations. The OOS-R2s are still much higher than those of the

traditional approach.

Using the three-month moving average beta sometimes increases but also decreases the

forecast accuracy. The next part of the panel shows this. Generally, the non-parametric VRP

performs better when combined with the three-month betas, while the parametric measures
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perform better with one-month betas. The Wald statistics are all significant regardless of the

sample length used for the beta estimation.

When the orthogonal premium is assumed to be a nonzero constant (“including intercept”),

the OOS-R2 slightly decreases but generally stays at a similar level. The Wald statistics appar-

ently decrease. This is because while assuming a constant for the orthogonal premium increases

the fit for it, additional estimation error is added for the OOS forecast. Therefore, the fact that

the OOS forecast does not decrease much may not necessarily suggest that the orthogonal risk

premium is trivial, and the VRP only captures a fraction of the total market risk premium.

To better understand when the new approach especially performs especially better over the

traditional approach, I develop a measure that computes the cumulative improvements in the

loss function over the benchmark. I define the Cumulative Out-Performance of the Forecast

(COF) as:

COFT =
T∑
t=1

∆Lt, (22)

where Lt is the square loss function given in Equation (18). Figure 4 plots the COF of the

constrained forecast, and Figure 5 that of the unconstrained forecast. The dotted line shows the

performance of the traditional approach, and the solid line shows the estimates using the one-

month WLS beta. The time-series plot has an upward trend when the forecast performs better

than the benchmark. A higher slope in a short time indicates that the predictions were more

accurate during that particular time, and a higher level means that the forecast methodology

performs well.

There are two things to note from this figure. First, these two figures suggest that the new

approach strictly dominates the forecast of the traditional approach. The difference between

these two prediction methodologies is especially pronounced for the post-1998 period. This is

partly expected from Figure 2 because these are also periods when the time-variation in the

contemporaneous betas is more clearly observed. Second, the figures suggest that, unlike the

traditional approach, the outperformance of combining the contemporaneous beta approach is

not driven by a single observation or a very short period.
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4.2. Time-varying Out-of-sample Predictability

I also study the connection between contemporaneous correlations and predictive R2s. I

do so by dividing the full sample into different non-overlapping subsamples. Each of the 288

months in the full sample period of 1993-2016 is classified into one of three groups according to

the monthly series of the contemporaneous correlations between market returns and variance

innovations. When the correlation during a particular month is more negative than the first

tercile of the historical distribution of past values, the month is classified as a high month.

When the correlation is more positive than the second tercile, it is classified as a lower month.

Otherwise, it is classified as a medium month. Therefore, the classifications are made without

any look-ahead bias. Then, the OOS-R2s are computed separately for each of these groups.

For the remainder of this section, I focus on the unconstrained forecasts.

Table 3 summarizes the OOS-R2s for each of the subsamples. For the contemporaneous

beta approach, the same estimation interval is used for both the correlations and betas. That

is, when one-month betas are used for predictions, the sample classifications are also based on

one-month correlations. I provide only the OOS-R2s and not the Wald statistics due to shorter

sample periods, so these results should be viewed somewhat informally.

First, for the traditional approach, there is a huge difference in OOS predictability. The

OOS-R2 between high and low periods is 16.4%–19.3% if the classifications are based on one-

month correlations. For the classifications using three-month estimates, the difference is 14.4%–

29.8%. This difference is much smaller for the contemporaneous beta approach. The differences

between the two periods are 3.2%–13.6% if the sample is classified based on one-month corre-

lations and 0.6%–8.8% for three-month correlations.

The smaller dispersion between the high and low periods is consistent with the model.

During low correlation times, the traditional method of running rolling predictive regressions

effectively overstates the role of the VRP by assuming a constant predictive coefficient. How-

ever, this is not the case for the contemporaneous beta approach. The new approach already

embeds information about the relation between returns and market variance in the beta, so

that we do not rely excessively on the VRP during low correlation periods.
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Thus, when market prices and variance move closely together, the VRP is a very powerful

predictor of short-horizon market returns. On the other hand, when they move independently,

it is hard to predict market returns using the VRP, since the market portfolio is less exposed

to variance risk.

4.3. Explaining the Orthogonal Premium

Return predictors other than the VRP have the potential to complement the VRP for two

reasons. First, the predictive power of the VRP is strong for monthly and quarterly returns.

However, for other predictors, that power is higher for predictions of longer horizon returns

(Poterba and Summers, 1988; Fama and French, 1988b). Second, the predictive strength of

many common predictors tends to decrease for the post-1993 period 11. In contrast, the VRP

has been demonstrated to be a strong predictor of market returns in the post-1990 period. Given

these differences, I hypothesize that the other predictors may help explain the risk premium

that arises from orthogonal risk.

I select several predictors that are well-known to predict market returns. These include:

dividend yield (D/Y) (Campbell and Shiller, 1988; Fama and French, 1988a), the term (TERM)

(Campbell, 1987) and the default premia (DEF) (Keim and Stambaugh, 1986), the short rate

(Campbell, 1987), short interest (Rapach, Ringgenberg, and Zhou, 2016), cay (Lettau and

Ludvigsen, 2001), and new orders-to-shipment (NO/S) (Jones and Tuzel, 2013). All of these

are known to perform well in predicting market returns over a long historical sample. For

completeness, I also consider the left jump variation (LJV) from (Bollerslev et al., 2015a) as

a candidate that potentially affects the orthogonal premium. I also let the VRP itself explain

variation in the orthogonal premium. Including the VRP is important because if the orthogonal

premium and the VRP are related, it will alter how the VRP relates to expected market returns.

In this case, the contemporaneous beta would be a biased estimator of the predictive slope.

Table 4 provides the OOS predictive performance of the hybrid approach, where the price

of orthogonal risk allowed to be time-varying. The left three columns evaluate the performance

11See, for example, Goetzmann and Jorion (1993); Ang and Bekaert (2007); Goyal and Welch (2008)
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for the post-1993 sample. Only the results with a one-month OLS beta is summarized as OLS

is easier to use, but the results are not much different from the WLS estimates. The first

two rows repeat the results from Table 2, where the orthogonal premium is assumed to be

constant. These results will serve as a benchmark for determining whether the predictors help

to explain the orthogonal premium. The right four columns summarize the OOS-R2s for the

high, medium, and low subsamples. The last column is the difference between the high and low

periods. Only the results for the non-parametric VRP is provided, but the results are similar

for other measures.

If evaluated over the entire sample period, none of the other eight predictors considered

improves the OOS-R2s compared with the benchmark. If each of the subsamples is analyzed

separately, the default premium improves the predictability during medium periods, and cay

improves the forecast during high periods. During low periods, cay provides an improvement.

However, the magnitude of the overall improvements are small, and they may not be performing

well in capturing the short-term risk premium, such as at the monthly level. Finally, when the

VRP is used additionally to explain the variation in the orthogonal premium, the R2s do not

improve if evaluated over the entire sample; the Wald statistics are lower, and the OOS-R2s

are even smaller. These results indicate that there is no strong evidence that the orthogonal

premium is related to the VRP.

4.4. Evaluating Economic Significance - A Trading Strategy

I also evaluate whether we can use the closeness between the two betas to form a trading

strategy. Following Goyal and Welch (2008), I use the one-step-ahead OOS forecasts to calculate

optimal weight on the stock market as

wT =
R̂m,T+1|T

γσ̂2
T

(23)

where γ = 3 is assumed for the risk aversion coefficient and the monthly square of VIX is used

as a proxy for σ̂2. The remaining proportion 1 − wT is invested in the risk-free asset. The
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weight in the market is capped at 200%. For all models, the same monthly forecast-based RV

is used as a denominator of the portfolio weights. The certainty equivalent (CE) of the return

is computed as

CE = Rp −
γ

2
V̂ar(Rp), (24)

where Rp and V̂ar(Rp) are the sample mean and variance of the portfolio, respectively. I

compare the Sharpe ratios (SR) and the CEs of various forecasts with the baseline, in which

the historical mean is assumed to be the best predictor of future returns.

The previous tables on the predictive performance show that predictions can be made more

accurately when the absolute correlation between returns and variance is high. A concern is

that the weights might rely too much on the VRP-based forecasts during periods when returns

and variance innovations are unrelated. Therefore, I also consider an alternative strategy, in

which a fraction of the allocation of stocks depends on the model-based predicted returns and

the rest on the historical average of past returns. The weight invested in the risky asset becomes

wT =
R̂m,T+1|T

γσ̂2
T

√
ρ̂2T +

Rm,T

γσ̂2
T

√
1− ρ̂2T , (25)

where ρ̂T is the estimated contemporaneous correlation between index returns and variance

innovations during month T. To distinguish this strategy formed on the conditional value of

the correlation from the basic trading strategy, I call this the conditional trading strategy and

the basic one as the unconditional trading strategy.

Table 5 summarizes the resulting gains/losses in the annualized SRs and CEs. All numbers

are based on one-month return forecasts, and the statistics are annualized. The left two columns

compare the SR and CE of the unconditional trading strategy. The first row summarizes the

values of holding a fixed unit weight on the market portfolio. The next row is where the past

average is used to form the weights on stocks and bonds and serves as a benchmark. Both the

SR and CE are slightly higher than the fixed unit weight as it systematically deweights the risky

portfolio when market variance is high. The SRs and CEs are compared to the benchmark, and

the relative gains or losses are reported in subsequent rows.
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For the unconditional-weighting strategy, the gains in SR and CE are extremely small

when predicting returns as in the traditional manner, but increases substantially by using

the contemporaneous beta approach. Notably, for the non-parametric VRP, the traditional

approach even decreases the CE and SR compared to the benchmark. Although there are

slight gains in SRs and CEs using the parametric VRP, they are very small in magnitude. The

gain in annual SR is less than 0.04 and is 1.3% in CE. On the other hand, the contemporaneous

beta approach shows much of a different result. The SR increases by 0.129–0.151, and the CE

increases by 3.9%–5.8%. The gains in assuming a constant orthogonal premium are marginal

compared to assuming no intercept. Some of the SRs increase, while others decrease.

The last four columns summarize the gains and losses in SRs and CEs for the trading strate-

gies based on conditional weighting. When using the traditional approach, the gains in SR and

CEs are slightly larger than those of the unconditionally weighted strategies. However, the

performances are slightly worse if compared with the strategies using unconditionally weighted

portfolios. As discussed, this is presumably because the contemporaneous beta already in-

corporates the information about the contemporaneous correlations. The performance of the

contemporaneous beta approach still dominates that of the traditional approach even when

they are weighted by the contemporaneous correlation. These results are also similar when

including an intercept.

In conclusion, these results indicate that predictions under the traditional approach could be

highly misleading during periods when returns and variance innovations are unrelated. During

these times, investors appear to perceive variance risk as unrelated to market risk. The VRP,

therefore, provides little information about the market risk premium. On the other hand,

when the correlation is highly negative, the VRP and the market risk premium are also highly

related because market and variance risk are closely related. Moreover, they are connected in

a particular way, so that market’s exposure to variance risk can replace the predictive beta.

The contemporaneous beta approach predicts the one-month market also in an economically

significant manner.
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5. In-sample Predictions

In this section I confirm that the key results also hold in sample. I first summarize the

results of the classical predictive regressions, replicating that of Bollerslev et al. (2009). Next,

I examine properties of the time-varying predictive beta and whether the predictive beta can

be inferred from the past contemporaneous relation between returns and variance innovations.

Then, I show that the in-sample predictive beta is approximately proportional to the contem-

poraneous beta. Finally, I investigate the performance of the predictive regressions over time

and demonstrate that their accuracy is related to the correlation between market returns and

variance innovations.

Bollerslev et al. (2009) run a classical predictive regression of market excess returns on the

VRP and find a positive and statistically significant predictive slope for horizons for less than

six months. This paper suggests that this predictive beta may change over time. They must

be higher when the market portfolio loads more on variance risk, and lower when market does

not load on variance risk. This hypothesis can be directly tested by running the regression of

Rm,t+1 = γ0 + γpV RPt + γIV RPt × β̂v,t + εp,t+1, (26)

where Rm,t+1 is the one-month predictive market return. A negative and statistically significant

interactive coefficient γI means that the predictive betas and the contemporaneous betas are

negatively related, as hypothesized.

Johnson (2017) argues that the results are not robust when using generalized least squares.

He shows that the predictive slope is not significant if tested on the original sample of Bollerslev

et al. (2009), 1990-2007. He claims that the return predictability is driven by several extreme

observations with high variance. To check for the possibility that using WLS may alter the

results, in addition to the OLS regressions, I also consider WLS regressions.

Equation 6 summarizes the regression coefficients, t-statistics, and the adjusted-R2s of the

simple predictive regression as well as the interactive regressions. Panel A summarizes the

results of the OLS regressions, and Panel B summarizes those of the WLS regressions. The

35



simple predictive regressions are in columns (1), (4), and (7), respectively. Similar to what is

observed in the OOS forecasts, the end-of-month parametric model based VRP performs best

as a return predictor in sample. Focusing on the OLS results, the predictive slope is between

3.33 and 5.50. Notably, these numbers are quite close to the average of contemporaneous

variance betas of Equation 1, -4.19, in magnitude. This exactly what the model of this paper

predicts. The WLS regression coefficient is also similar in magnitude, although slightly smaller.

The regression coefficients are statistically significant with similar t-statistics. The results are

consistent with Johnson (2017), who show that for the 1990-2015 sample, the level of significance

of the VRP predictive regressions is unaffected.

The other columns of the Panel summarize the regression coefficients of the interactive re-

gressions. Both the interactive regressions of OLS betas and WLS betas are presented. Across

all measures of the contemporaneous beta estimate considered and for both of the VRP mea-

sures, the coefficient on the interactive variable is negative and statistically significant. On

average, a single unit decrease in the one-month contemporaneous beta corresponds to an ap-

proximately 0.58-0.97 unit increase in the predictive betas. Although the interactive coefficients

for the WLS are also slightly smaller, they are still statistically significant with comparable t-

statistics. We, therefore, reject the hypothesis that there is no relation between the predictive

and contemporaneous betas.

I also study the connection between contemporaneous correlations and predictive R2s. I

follow the OOS classification method of the previous section. The entire sample of 324 months

is classified into three groups. High denotes months that has the most negative correlation

between market returns and variance innovations. To avoid misclassification during the early

years when there is not enough data for the benchmark distribution, I use the entire 1990-1994

year to classify the first 48 months.

Next, I run a constant coefficient predictive regression for each of these subsamples sepa-

rately. Table 7 reports the R2s, coefficients, and t-statistics for each of the predictive regressions

ran separately for subsamples. The model suggests that the VRP should explain a greater frac-

tion of the market risk premium when a large proportion of market risk is explained by variance

risk. If this hypothesis is true, the R2s must be high and statistically significant during high
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periods. On the contrary, during low periods, the R2s of the predictive regressions could be

insignificant. The empirical results support this hypothesis. The in-sample R2s are much higher

during high periods, 9.1%-14.0%, compared to the low periods, which has a R2 of 0.4%-1.4%.

Conclusively, this table suggests that there are times when predictability of the VRP is strong

and other times when its predictability is weaker or even non-existent. The predictive power

depends on the relationship between return and variance innovations.

In short, the results show that the contemporaneous and predictive relations are linked in

a very specific manner, such that the predictive beta depends on the contemporaneous beta.

Moreover, the predictive performance, measured by R2, increases as the absolute contempora-

neous correlation between the market returns and the variance innovations becomes larger.

6. Robustness

6.1. Alternative Measures of the Variance Risk Premium

Bekaert and Hoerova (2014) argue that the return predictability of the VRP largely depends

on how the VRP is measured. To understand how using a different variance forecast model on

the second component affects the interactive role of the contemporaneous beta and the VRP, I

construct several other measures of VRP that have been used in previous research.

This paper is motivated by the predictive regression of Bollerslev et al. (2009), which reports

a positive relation between the VRP and future market returns. The VRP in the article is

constructed by taking the difference between the end-of-month value of implied variance and

the monthly average realized variance. As discussed, this timing mismatch could result in

biases when market variance has trends during a month especially because volatility trends are

correlated with the leverage effect. I consider the measure of Bollerslev et al. (2009) and denote

this by VRPBTZ.
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I also consider the measure of Bekaert and Hoerova (2014). The second component, the

real-world expectation component of the VRP is measured using the forecast model

R̃V t = α0 + α1R̃V t−1 + α2V IX
2
t−1 + et, (27)

where R̃V t is the monthly sum of the daily RVs. This measure is often preferred Gonzalez-

Urteaga and Rubio (2016); Chen et al. (2016) because the real-world expectation component

is forward-looking, which will reduce possible bias created by the trending variance. Even

then, this measure may still be biased unless both components are measured at the same time.

Therefore, I define VRPBH as the difference between the end-of-month value of VIX and the

variance forecast based on the above model.

Finally, I construct a VRP measure using the S&P 100 Index. This alternative measure is

useful because the option-implied variance on this index (VXO) is available from 1986. The

VXO is matched with the S&P 100 Index realized variance, computed in the same manner as

those of the S&P 500 Index. The VRP constructed in this manner, denoted by VRPVXO, is also

measured in three different ways. Due to the availability of the intraday trading data of the

S&P 100 index (1987-2016), this measure is restricted to the sample period of 1988-2016. The

variance betas and correlations are also computed using the realized variance of the S&P 100

Index, whenever one of these VRP measures are used for prediction. Since this measure can be

constructed for two additional years, it allows us to rely on a slightly longer sample period.

Table 8 reports the key results of this paper using these alternative measures of the VRP.

Panel A shows the OOS performance using the traditional approach, and Panel B reports the

performance of the contemporaneous beta approach. To save space, no intercept is assumed,

but the results are similar assuming a constant orthogonal premium (i.e. similar R2s with

slightly lower Wald statistics).

Overall, the results are similar to those of previous sections. Panel A shows that the OOS

predictability of the VRP using the traditional approach depends on how the VRP is measured.

None of the Wald statistics is significant, suggesting that one-month market returns are non-
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predictable. Especially adding the earlier sample of 1991-1993 makes the VRP a slightly worse

predictor when using the traditional approach of return forecasting.

Panel B provides the results for the new approach without the intercept. Across all measures,

there is an increase in the OOS-R2s. For the BTZ measure, the improvements in the R2s are

marginal when using a single-month beta, but the performance increases when we use the

three-month beta. I believe this is because the BTZ measure contains a volatility trend that

is correlated with the leverage effect. The hypothesis is strengthened when we consider the

performance of the BH measure. Compared to the traditional approach, the OOS-R2 increases

by 3.0%–4.9%, and the Wald statistics are all statistically significant at the 10% level. Although

not reported in the table, the level of significance decreases if we constructed the BH measure

to contain volatility trends. Finally, the VXO based measure suggests there is monthly market

returns are still predictable even if we measure the VRP using the S&P 100 Index, or if we

add two additional years of data12. All combinations of VRP and beta estimates can predict

the monthly market returns significantly, except for when we combine the end-of-month based

VRP with the three-month OLS beta.

Panel C summarizes the results of conditional OOS return forecasting. Only the results

of the traditional approach for the post-1993 period are presented because the difference be-

tween high and low periods is expected to be strongest for the traditional approach. Across

all alternative measures of the VRP and regardless of the sample length used to estimate the

contemporaneous correlation, the returns are predictable only during periods when the correla-

tion between market returns and variance innovations is highly negative. These results confirm

the hypothesis that the VRP is a better measure of the monthly market risk premium when

variance risk explains a higher proportion of market risk.

12The in-sample regression for this measure is only marginally significant with a t-statistics of 1.24–2.32. The
interactive coefficients are all highly statistically significant with t-statistics above 3.
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6.2. Alternative Specifications for the Traditional Approach

In a recent study, Johnson (2017) examines the OOS performance of a number of common

return predictors and shows that using WLS as the first-stage regression improves OOS per-

formance. I study whether using the WLS for OOS prediction makes the forecast comparable

to the contemporaneous beta approach. The first part of Panel A in Table 9 shows the re-

sult. Compared to the results in Table 2, WLS slightly improves OOS predictability. The R2s

sometimes increase as much as 0.6% but decreases for other measures, for example, if the VRP

is measured using the end of the month observations. However, even in this case, the Wald

statistic slightly improves. Overall, despite the slight increase in OOS predictability, they are

nowhere comparable to the forecasts of the contemporaneous beta approach.

The traditional approach of return forecasting requires an estimate for the slope and in-

tercept to form an OOS forecast. If the sampling period for the first step regression is too

short, the estimate may contain too much estimation error, so that it does not provide a good

forecast. Using excessive data for the first step regression is also problematic if the predictive

relation rapidly changes over time. The traditional approach of return forecasting may fail in

either of these circumstances.

To deal with the possibility that the under-performance of the traditional approach is driven

by not selecting the optimal first-stage estimation interval, I consider five-year/eight-year rolling

windows for the first-stage regression. The next part of Panel A shows the results. The panel

shows that using a shorter sample for the first step regression makes the out-of-sample predictive

performance even worse.

For the same reason, I also drop the first eight years from the sample entirely and consider

a subsample of 1998-2016. The last part of Panel A of Table 9 summarizes the performance for

the sample of 1998-2016. Panel B summarizes the result of the contemporaneous beta approach.

The contemporaneous beta approach strictly out-performs traditional return forecasting. The

OOS-R2s for the traditional approach slightly increase for the post-1998 period, but there is an

equivalent increase in predictive performance using the contemporaneous beta approach. These

are times when the betas are more negative and when the fluctuations are better observed.
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7. Conclusion

It is well known that the market reacts negatively to unexpected shocks in market variance.

This negative relation between market returns and variance innovation implies that the market

is subject to variance risk. Fortunately, we can gauge the variance risk premium of the market

relatively accurately using option prices and the realized variance of the market index. More-

over, previous research finds that this risk premium is useful in predicting short-horizon market

returns.

This paper studies how the market’s exposure to variance risk is related to the time-varying

predictability of market returns by the VRP. First, this article shows that the slope that de-

termines the contemporaneous relationship between market and variance risk resembles the

relationship between the risk premium of the market and market variance. As a result, when

the beta of the contemporaneous regression of market returns on changes in its variance is used

as the predictive slope for the VRP, one-month market returns can be predicted in a statistically

and economically significant manner, even out of sample. Second, the predictive power strongly

depends on the contemporaneous correlation between returns and variance innovations. When

correlations are highly negative, predictions can be made more accurately. This result holds

both in sample and out of sample. Since the predicted strength of the leverage effect can be

estimated ex-ante, we can anticipate this predictive power. The combination of the contempo-

raneous beta and the VRP outperforms the average returns consistently over time, regardless

of the strength of the asymmetry in the market.

Although the VRP is constructed from option prices on the index as well as index returns,

its ability to predict future returns is not necessarily restricted to the equity index. At least, in

theory, the VRP should predict all returns that highly correlate with changes in stock market

variance. Furthermore, while not directly shown, this paper suggests that the predictive beta

may be related to the exposure of the asset to market variance risk.

41



References

Andersen, T. G., Bollerslev, T., 1997. Heterogeneous information arrivals and return volatility

dynamics: Uncovering the long-run in high frequency returns. Journal of Finance 52, 975–

1005.

Andersen, T. G., Bollerslev, T., Diebold, F. X., 2007. Roughing it up: Including jump compo-

nents in the measurement, modeling, and forecasting of return volatility. Review of Economics

and Statistics 89, 701–720.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P., 2001. The distribution of realized

exchange rate volatility. Journal of the American Statistical Association 96, 42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P., 2003. Modeling and forecasting

realized volatility. Econometrica 71, 579–625.

Ang, A., Bekaert, G., 2007. Stock return predictability: Is it there? Review of Financial Studies

20, 651–707.

Ang, A., Hodrick, R. J., Xing, Y., Zhang, X., 2006. The cross-sectionection of volatility and

expected returns. Journal of Finance 61, 259–299.

Bali, T. G., Zhou, H., 2016. Risk, uncertainty, and expected returns. Journal of Financial and

Quantitative Analysis 51, 707–735.

Bandi, F., Reno, R., 2016. Price and volatility co-jumps. Journal of Financial Economics 119,

107–146.

Bekaert, G., Hoerova, M., 2014. The vix, the variance premium and stock market volatility.

Journal of Econometrics 183, 181–192.

Bekaert, G., Hoerova, M., LoDuca, M., 2013. Risk, uncertainty and monetary policy. Journal

of Monetary Economics 60, 771–788.

Black, F., 1976. Studies of stock price volatility changes. In: Proceedings of the 1976 Meetings

of the American Statistical Association, pp. 177–181.

42



Bollerslev, T., Gibson, M., Zhou, H., 2011. Dynamic estimation of volatility risk premia and

investor risk aversion from option-implied and realized volatilities. Journal of Econometrics

160, 235–245.

Bollerslev, T., Litvinova, J., Tauchen, G., 2006. Leverage and volatility feedback effects in

high-frequency data. Journal of Financial Econometrics 4, 353–384.

Bollerslev, T., Marrone, J., Xu, L., Zhou, H., 2014. Stock return predictability and variance

risk premia: Statistical inference and international evidence. Journal of Financial and Quan-

titative Analysis 49, 633–661.

Bollerslev, T., Tauchen, G., Zhou, H., 2009. Expected stock returns and variance risk premia.

Review of Financial Studies 22, 4463–4492.

Bollerslev, T., Todorov, V., Xu, L., 2015a. Tail risk premia and return predictability. Journal

of Financial Economics 118, 113–134.

Bollerslev, T., Xu, L., Zhou, H., 2015b. Stock return and cash flow predictability: The role of

volatility risk. Journal of Econometrics 187, 458–471.

Busch, T., Christensen, B. J., Nielsen, M. O., 2011. The role of implied volatility in forecasting

future realized volatility and jumps in foreign exchange, stock, and bond markets. Journal of

Econometrics 160, 48–57.

Campbell, J. Y., 1987. Stock returns and the term structure. Journal of Financial Economics

18, 373–399.

Campbell, J. Y., Shiller, R. J., 1988. Stock prices, earnings, and expected dividends. Journal

of Finance 43, 661–676.

Campbell, J. Y., Thompson, S. B., 2008. Predicting excess stock returns out of sample: Can

anything beat the historical average? Review of Financial Studies 21, 1509–1531.

Carr, P., Wu, L., 2009. Variance risk premiums. Review of Financial Studies 22, 1311–1341.

Carr, P., Wu, L., 2016. Analyzing volatility risk and risk premium in option contracts: A new

theory. Journal of Financial Economics 120, 1–20.

43



Chang, B. Y., Christoffersen, P., Jacobs, K., 2013. Market skewness risk and the cross section

of stock returns. Journal of Financial Economics 107, 46–68.

Chen, H., Joslin, S., Ni, S. X., 2016. Demand for crash insurance, intermediary constraints, and

risk premia in financial markets. Review of Financial Studies, Forthcoming .

Chen, L., 2009. On the reversal of return and dividend growth predictability: A tale of two

periods. Journal of Financial Economics 92, 128–151.

Chen, X., Ghysels, E., 2011. News– good or bad?– and its impact on volatility predictions over

multiple horizons. Review of Financial Studies 24, 46–81.

Choi, H., Mueller, P., Vedolin, A., 2017. Bond variance risk premiums. Review of Finance 21,

987–1022.

Christie, A. A., 1982. The stochastic behavior of common stock variances. Journal of Financial

Economics 10, 407–432.

Corsi, F., 2009. A simple approximate long-memory model of realized volatility. Journal of

Financial Econometrics 7, 174–196.

Cujean, J., Hasler, M., 2017. Why does return predictability concentrate in bad times? The

Journal of Finance 72, 2717–2758.

Dangl, T., Halling, M., 2012. Predictive regressions with time-varying coefficients. Journal of

Financial Economics 106, 157–181.

Diebold, F. X., Mariano, R. S., 1995. Comparing predictive accuracy. Journal of Business &

Economic Statistics 13, 253–263.

Drechsler, I., Yaron, A., 2011. What’s vol got to do with it. Review of Financial Studies 24,

1–45.

Fama, E. F., French, K. R., 1988a. Dividend yields and expected stock returns. Journal of

Financial Economics 22, 3–25.

44



Fama, E. F., French, K. R., 1988b. Permanent and temporary components of stock prices.

Journal of Political Economy 96, 246–273.

Feunou, B., Jahan-Parvar, M. R., Okou, C., 2017. Downside variance risk premium. Journal of

Financial Econometrics, Forthcoming .

French, K. R., Schwert, G. W., Stambaugh, R. F., 1987. Expected stock returns and volatility.

Journal of Financial Economics 19, 3–29.

Garcia, D., 2013. Sentiment during recessions. Journal of Finance 68, 1267–1300.

Gerd, H., Lunde, A., Shephard, N., Sheppard, K. K., 2009. Oxford-man institute’s realized

library. Oxford-Man Institute, University of Oxford .

Giacomini, R., White, H., 2006. Tests of conditional predictive ability. Econometrica 74, 1545–

1578.

Goetzmann, W. N., Jorion, P., 1993. Testing the predictive power of dividend yields. Journal

of Finance 48, 663–679.

Gonzalez-Urteaga, A., Rubio, G., 2016. The cross-sectional variation of volatility risk premia.

Journal of Financial Economics 119, 353–370.

Goyal, A., Welch, I., 2008. A comprehensive look at the empirical performance of equity pre-

mium prediction. Review of Financial Studies 21, 1455–1508.

Hansen, P. R., Lunde, A., 2006. Realized variance and market microstructure noise. Journal of

Business & Economic Statistics 24, 127–161.

Henkel, S. J., Martin, J. S., Nardari, F., 2011. Time-varying short-horizon predictability. Jour-

nal of Financial Economics 99, 560–580.

Hodrick, R. J., 1992. Dividend yields and expected stock returns: Alternative procedures for

inference and measurement. Review of Financial Studies 5, 357–386.

Johannes, M., Korteweg, A., Polson, N., 2014. Sequential learning, predictability, and optimal

portfolio returns. Journal of Finance 69, 611–644.

45



Johnson, T. L., 2017. A fresh look at return predictability using a more ecient estimator.

Unpublished Working Paper. University of Texas at Austin.

Jones, C. S., Tuzel, S., 2013. New orders and asset prices. Review of Financial Studies 26,

115–157.

Keim, D. B., Stambaugh, R. F., 1986. Predicting returns in the stock and bond markets. Journal

of Financial Economics 17, 357–390.

Kelly, B., Jiang, H., 2014. Tail risk and asset prices. Review of Financial Studies 27, 2841–2871.

Lettau, M., Ludvigsen, S. C., 2001. Consumption, aggregate wealth, and expected stock returns.

Journal of Finance 56, 815–849.

Lettau, M., Van Nieuwerburgh, S., 2008. Reconciling the return predictability evidence. Review

of Financial Studies 21, 1607–1652.

Londono, J. M., 2014. The variance risk premium around the world. Working Paper .

Londono, J. M., Zhou, H., 2017. Variance risk premiums and the forward premium puzzle.

Journal of Financial Economics 124, 414–440.

Lustig, H., Roussanov, N., Verdelhan, A., 2014. Countercyclical currency risk premia. Journal

of Financial Economics 111, 527–553.

Martin, I., Wagner, C., 2016. What is the expected return on the market? Quarterly Journal

of Economics 132, 367–433.

Merton, R. C., 1973. An intertemporal capital asset pricing model. Econometrica 41, 867–87.

Pastor, L., Stambaugh, R., 2009. Predictive systems: Living with imperfect predictors. Journal

of Finance 64, 1583–1628.

Pesaran, M. H., Timmermann, A., 1995. Predictability of stock returns: Robustness and eco-

nomic significance. Journal of Finance 50, 1201–1228.

Pindyck, R. S., 1984. Risk, inflation, and the stock market. American Economic Review 74,

335–351.

46



Poterba, J. M., Summers, L. H., 1988. Mean reversion in stock prices: Evidence and implica-

tions. Journal of Financial Economics 22, 27–59.

Rapach, D. E., Ringgenberg, M. C., Zhou, G., 2016. Short interest and aggregate stock returns.

Journal of Financial Economics 121, 46 – 65.

Rapach, D. E., Strauss, J. K., Zhou, G., 2010. Out-of-sample equity premium prediction:

Combination forecasts and links to the real economy. Review of Financial Studies 23, 821–

862.

Stambaugh, R. F., 1999. Predictive regressions. Journal of Financial Economics 54, 375–421.

Todorov, V., 2010. Variance risk-premium dynamics: The role of jumps. Review of Financial

Studies 23, 345–383.

Wang, H., Zhou, H., Zhou, Y., 2013. Credit default swap spreads and variance risk premia.

Journal of Banking & Finance 37, 3733–3746.

Zhang, L., Mykland, P., Ait-Sahalia, Y., 2005. A tale of two time scales: Determining integrated

volatility with noisy high-frequency data. Journal of the American Statistical Association 100,

1394–1411.

47



Fig. 1. Time Series of the Variance Risk Premium

This figure compares the three VRP measures considered in this paper. VRPN is nonparametric, measured as

the difference between the monthly average of VIX2/12 and the monthly realized variance. Two other

measures are model-based and is estimated as the difference between VIX2/12 and the one-step-ahead forecast

of the realized variance. A variant of HAR-RV model of Corsi (2009) is used to predict the variance. It is

either averaged over the month (VRPP ) or estimated at the end of the month (VRPPE ).
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(a) Weighted Least Squares

(b) Ordinary Least Squares

Fig. 2. Time Series of the Contemporaneous Betas

This time-series plot shows the time variation in the monthly contemporaneous betas. The contemporaneous
beta is the slope of the regression of market returns on variance innovations.

Rm,τ = β0,t + βv,t(RVτ − Eτ−1[RVτ ]) + ετ . (28)

This regression is estimated using all observations τ = {τ1, . . . , τm(t)} that belong to month t. The regression
is estimated using weighted least squares (a) or ordinary least squares (b). The solid line is the three-month
moving average of these estimates.
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Fig. 3. Time Series of the Contemporaneous Correlations

This time-series plot shows the time variation in the monthly contemporaneous correlations between daily

returns and variance innovations. The correlations are computed using all daily observations that belong to

that month. Therefore, these monthly estimates are from non-overlapping observations. Variance innovations

are defined as the difference between realized variance and the lagged one-step-ahead variance forecast of the

HAR-RV model. The solid line is computed using three-months of data.
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(a) Variance Risk Premium (Non-parametric)

(b) Variance Risk Premium (Parametric, Averaged)

(c) Variance Risk Premium (Parametric, End of Month)

Fig. 4. Comparing the Out-of-sample Performance (Constrained)

This figure compares the out-of-sample performance between the traditional approach of return forecasting
and the contemporaneous beta approach, when the VRP is used as a monthly return predictor. The figure
plots the time series of the Cumulative Out-performance of the Forecast (COF) defined as

COFT =

T∑
t=1

[(R̄m,t −Rm,t+1)2 − (max(R̂m,t+1|t, 0)−Rm,t+1)2]. (29)

The COF of the traditional approach is shown in dotted lines, the one for the contemporaneous beta approach
with one-month WLS betas in solid lines, and the one with one-month OLS betas in dashed lines.
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(a) Variance Risk Premium (Non-parametric)

(b) Variance Risk Premium (Parametric, Averaged)

(c) Variance Risk Premium (Parametric, End of Month)

Fig. 5. Comparing the Out-of-sample Performance (Unconstrained)

This figure compares the out-of-sample performance between the traditional approach of return forecasting
and the contemporaneous beta approach when the VRP is used as a monthly return predictor. The figure
plots the time series of the Cumulative Out-performance of the Forecast (COF) defined as

COFT =

T∑
t=1

(R̄m,t −Rm,t+1)2 − (R̂m,t+1|t −Rm,t+1)2 (30)

The COF of the traditional approach is shown in dotted lines, the one for the contemporaneous beta approach
with one-month WLS betas in solid lines, and the one with one-month OLS betas in dashed lines.
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Table 1: Summary Statistics

Panel A of this table summarizes the means, standard deviations, and the first order autocorrelations for the
main variables of interest during the sample period of 1990-2016. The realized variance (RV) is the sum of the
square of five-minute market returns from the first to the last day of the month. The implied variance (IV) is
the monthly mean of the volatility index (VIX) squared divided by 12. The variance risk premium (VRP) is
estimated using three different methods. V RPN is the monthly average of the difference between IV and RV.
VRPP is the difference between IV and the sum of the 22-day RV forecasts averaged over the month. VRPPE

is the same parametric measure but estimated at the end of the month. These variables are multiplied by
10,000. The contemporaneous beta of month t (β̂v,t) is the slope of the regression

Rm,τ = β0,t + βv,t(RVτ − Eτ−1[RVτ ]) + ετ , (31)

where Rm,τ is the market excess return of day τ , estimated using all observations during the month. β̂v,WLS,t

is the estimate from weighted least squares. The contemporaneous correlation (ρ̂t) is the correlation between
daily market returns and variance innovations. Panel B summarizes the correlations between the
beta/correlation estimates and other variables of interest. VIX trend is the difference between the
end-of-month level and the monthly average of VIX. SKEW is the CBOE SKEW index, and tail risk is from
Kelly and Jiang (2014).

Panel A. Summary Statistics

ρ̂ ≤ median NBER Recession

Mean StDev Mean StDev Mean StDev Autocorr.

RV (Monthly) 16.43 29.51 16.67 34.68 47.00 72.52 0.643
Implied Variance (Monthly) 19.71 7.49 19.89 7.34 29.02 10.30 0.840
VRPP 21.74 17.86 21.43 16.38 39.76 31.01 0.764
VRPPE 21.30 18.77 21.86 19.98 31.81 29.04 0.601

β̂v -4.19 5.10 -7.72 3.92 -1.49 3.05 0.200

β̂v,WLS -4.56 5.08 -7.72 3.81 -1.60 3.01 0.203
ρ̂ -0.259 0.281 -0.486 0.132 -0.130 0.226 0.124

Number of Month 324 162 37

Panel B. The Leverage Effect (Correlations)

β̂v,t+1 ρ̂t+1

Contemporaneous Retur (RM,t+1) 0.120 0.280

Lagged Annual Return (
∑11
k=0RM,t−k) −0.261 −0.287

RVt 0.196 0.142
VIXt 0.297 0.165
VIX Trendt −0.121 −0.259
SKEWt −0.300 −0.222
Tail Riskt −0.128 −0.131
VRPN,t 0.199 0.152
VRPP,t 0.274 0.214

VRPPE ,t 0.220 0.128
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Table 2: Out-of-Sample Performance Evaluation (1993-2016)

This table summarizes the out-of-sample predictive performance for one-month market returns over 1993-2016,
using the VRP as a predictor. V RPt is the monthly series of the VRP estimated in one of several ways as
described in Table 1.
The traditional approach uses past ten years of data to run a first-stage predictive regression of monthly
market returns on the lagged VRP. A one-step-ahead forecast is then formed using these coefficients and
compared with the actual realized value.
The contemporaneous beta approach of out-of-sample prediction sets the forecast equal to the negative of the
contemporaneous beta multiplied by the VRP. The risk-free rate is added to make it comparable to actual
returns. The forecast of the contemporaneous beta approach including intercept is obtained by estimating δ0
from the regression

Rm,t+1 = −β̂v,tV RPt + δ0 + ηt+1. (32)

The out-of-sample R2s and Wald statistics along the p-values of the statistics are provided for each of these
methods. The constrained forecasts are formed by setting any negative return forecasts to zero.

VRP Measures

VRPN VRPP VRPPE

Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained

A. The Traditional Approach

OOS-R2 0.010 −0.007 0.002 −0.008 0.052 0.032
Wald 0.064 0.033 0.004 0.060 1.501 0.875
p-value (0.800) (0.857) (0.952) (0.807) (0.221) (0.350)

B. The Contemporaneous Beta Approach

B-1. No Intercept

1-month OOS-R2 0.065 0.061 0.079 0.076 0.084 0.079
WLS Wald 5.027 6.836 7.956 10.838 5.996 6.984

p-value (0.025) (0.009) (0.005) (0.001) (0.014) (0.008)

1-month OOS-R2 0.054 0.051 0.068 0.066 0.085 0.069
OLS Wald 3.686 5.325 8.056 8.964 4.544 5.665

p-value (0.055) (0.021) (0.005) (0.003) (0.033) (0.017)

3-month OOS-R2 0.064 0.066 0.049 0.052 0.064 0.064
WLS Wald 11.460 12.232 3.554 3.818 4.130 4.122

p-value (0.001) (0.000) (0.059) (0.051) (0.042) (0.042)

3-month OOS-R2 0.053 0.060 0.041 0.047 0.054 0.059
OLS Wald 10.096 11.462 2.735 3.552 3.339 3.862

p-value (0.001) (0.001) (0.098) (0.059) (0.068) (0.049)

B-2. Including Intercept

1-month OOS-R2 0.059 0.053 0.074 0.068 0.080 0.073
WLS Wald 4.078 5.317 3.668 8.991 5.096 6.018

p-value (0.043) (0.021) (0.055) (0.003) (0.024) (0.014)

1-month OOS-R2 0.047 0.045 0.062 0.061 0.065 0.064
OLS Wald 4.920 4.084 6.485 7.543 5.096 4.899

p-value (0.027) (0.043) (0.011) (0.006) (0.024) (0.027)
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Table 3: Conditional Out-of-sample Predictions

This table compares the conditional out-of-sample performance of one-month market return predictions using
the VRP as a predictor. Each month in the sample is classified as a high, medium or a low month depending
on whether the contemporaneous correlation is greater or less than the historical terciles evaluated using data
available up to that point. The contemporaneous correlation is defined as the correlation between daily
market returns (Rm,τ ) and variance innovations (RVτ − Eτ−1[RVτ ]). ‘High’ contains observations for which
the estimates are highly negative. The classification is based either on one-month or on three-month
correlations. The estimation period for the contemporaneous betas are matched to that of the correlations.
Then, the out-of-sample R2s are evaluated for each of these subsamples separately.

OOS-R2

VRPN VRPP VRPPE

1-month 3-month 1-month 3-month 1-month 3-month

A. The Traditional Approach

High 0.068 0.162 0.096 0.065 0.164 0.207
Medium 0.049 0.069 −0.035 0.057 −0.050 0.060
Low −0.124 −0.135 −0.097 −0.079 0.000 −0.056

High-Low 0.193 0.298 0.193 0.144 0.164 0.263

B. The Contemporaneous Beta Approach

B-1. No Intercept

WLS High 0.082 0.131 0.122 0.065 0.161 0.128
Medium 0.056 0.054 0.053 0.048 0.031 0.053
Low 0.050 0.047 0.045 0.059 0.036 0.048

High-Low 0.032 0.085 0.077 0.006 0.125 0.080

OLS High 0.079 0.126 0.120 0.064 0.156 0.123
Medium 0.042 0.042 0.038 0.037 0.009 0.041
Low 0.029 0.039 0.024 0.050 0.020 0.040

High-Low 0.050 0.088 0.096 0.014 0.136 0.083

B-2. Including Intercept

WLS High 0.074 0.147 0.114 0.084 0.139 0.149
Medium 0.057 0.033 0.055 0.024 0.050 0.031
Low 0.040 0.035 0.035 0.050 0.024 0.038

High-Low 0.034 0.112 0.079 0.034 0.115 0.111

OLS High 0.070 0.140 0.111 0.080 0.131 0.141
Medium 0.041 0.021 0.037 0.014 0.032 0.019
Low 0.021 0.025 0.016 0.039 0.004 0.028

High-Low 0.049 0.114 0.095 0.040 0.128 0.112
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Table 4: Analysing the Price of Orthogonal Risk

This table provides the out-of-sample performance of the hybrid approach, in which additional predictors are
used to complement the contemporaneous beta approach. Forecasts are formed from the regression

Rm,t+1 = −β̂v,tV RPt + δ0 + δ1

√
1− ρ̂2tXt + ηt+1, (33)

where Xt is some predictor. The out-of-sample R2s and the p-values are provided for each set of forecasts.
Also, in the right four columns, the out-of-sample R2s are provided for each of the the subsample
classifications. To save space, only the results for the non-parametric VRP are provided.

Additional 1993-2016 Subsamples

Variable (Xt) VRPN VRPP VRPPE High Medium Low H-L

Intercept OOS-R2 0.047 0.062 0.065 0.070 0.041 0.021 0.049
Only p-value (0.027) (0.011) (0.024)

D/Y OOS-R2 0.016 0.042 0.033 0.017 0.019 0.013 0.004
p-value (0.464) (0.167) (0.235)

TERM OOS-R2 0.021 0.053 0.028 0.058 0.019 -0.021 0.079
p-value (0.260) (0.061) (0.234)

DEF OOS-R2 −0.015 0.018 0.002 0.000 0.045 -0.079 0.079
p-value (0.639) (0.614) (0.962)

Short Rate OOS-R2 −0.010 0.008 -0.310 0.007 0.031 -0.063 0.069
p-value (0.731) (0.839) (1.000)

Short Interest OOS-R2 0.020 0.052 0.023 0.048 0.028 -0.020 0.068
p-value (0.361) (0.096) (0.397)

cay OOS-R2 0.025 0.054 0.038 0.089 -0.067 0.023 0.066
p-value (0.359) (0.125) (0.240)

NO/S OOS-R2 0.015 0.048 0.025 0.036 0.027 -0.019 0.055
p-value (0.434) (0.106) (0.300)

LJV OOS-R2 −0.104 −0.189 -0.103 -0.013 -0.108 -0.212 0.199
p-value (0.092) (0.276) (0.205)

VRP OOS-R2 −0.001 −0.070 -0.074 0.069 0.023 -0.100 0.169
p-value (0.995) (0.312) (0.150)

56



Table 5: Evaluation of the Economic Significance of Out-of-Sample Trading Strategies

This table summarizes the out-of-sample investment performance in terms of the annual Sharpe Ratios (SR)
and the Certainty Equivalents (CE), assuming a risk-averse investor with a risk-aversion coefficient of three.
The weight of the market portfolio is determined by the out-of-sample forecasts constructed using the
approaches described in the main text, capped at 0% and 200%. The rest 1− wT is invested in the risk-free
asset. The ‘unconditional’ weights are formed in a way that does not rely on the contemporaneous
correlations. The weights are

wT =
R̂m,T+1|T −Rf

γσ̂2
T

. (34)

The ‘conditional’ weights depend on the size of the estimated contemporaneous correlations (ρ̂) and equals

wT =
R̂m,T+1|T −Rf

γσ̂2
T

√
ρ̂2T +

Rm,T −Rf
γσ̂2

T

√
1− ρ̂2T . (35)

The benchmark is when the historical average is used as a forecast for the next month. Gains/Losses relative
to the benchmark is reported.

Unconditional Weighting Conditional Weighting

SR CE ∆ SR ∆ CE SR CE ∆ SR ∆ CE

Fixed Weight 0.527 0.046
Average (Benchmark) 0.632 0.040

The Traditional Approach

VRPN 0.524 0.033 -0.108 -0.007 0.673 0.048 +0.042 +0.009
VRPP 0.667 0.044 +0.035 +0.004 0.739 0.054 +0.107 +0.014
VRPPE 0.672 0.053 +0.040 +0.013 0.741 0.059 +0.109 +0.019

The Contemporaneous Beta Approach
No Intercept
VRPN 0.760 0.078 +0.129 +0.039 0.729 0.071 +0.097 +0.031
VRPP 0.922 0.098 +0.290 +0.058 0.836 0.084 +0.204 +0.044
VRPPE 0.782 0.090 +0.151 +0.050 0.749 0.078 +0.117 +0.039

Including Intercept
VRPN 0.753 0.081 +0.121 +0.041 0.715 0.070 +0.083 +0.030
VRPP 0.902 0.098 +0.270 +0.059 0.817 0.081 +0.185 +0.042
VRPPE 0.812 0.097 +0.180 +0.057 0.750 0.079 +0.119 +0.039
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Table 6: Predictive Regressions of Monthly Market Returns (1990-2016)

This table summarizes the results of one-month in-sample predictive regressions of market returns (Rm,t+1)
using the VRP as a return predictor. (1), (4), and (7) show the results of the regression:

Rm,t+1 = β0 + βpV RPt + εt+1. (36)

The other columns summarize the results of the interactive predictive regression:

Rm,t+1 = γ0 + γpV RPt + γI β̂v,t × V RPt + εt+1, (37)

where β̂v,t is the contemporaneous beta that is either estimated from ordinary least squares (OLS) or weighted
least squares (WLS). Panel A summarizes the OLS results and Panel B the WLS results. The t-statistics are
estimated using heteroscedasticity-consistent standard errors.

Panel A. Prediction using Ordinary Least Squares

VRPN VRPP VRPPE

β̂v,t 1M-OLS 1M-WLS 1M-OLS 1M-WLS 1M-OLS 1M-WLS
(1) (2) (3) (4) (5) (6) (7) (8) (9)

VRPt 4.485∗ 4.030∗ 3.931∗ 3.333∗ 2.542 2.396∗ 5.497∗∗∗ 4.210∗∗ 3.874∗∗

(1.85) (1.82) (1.80) (1.65) (1.31) (1.84) (3.15) (2.18) (1.96)

VRPt ×β̂v,t −0.751∗∗∗ −0.843∗∗∗ −0.883∗∗∗ −0.973∗∗∗ −0.579∗∗ −0.660∗∗

(2.67) (3.02) (3.15) (3.50) (2.29) (2.56)

Adj-R2 0.028 0.054 0.062 0.017 0.051 0.060 0.056 0.073 0.079

Panel B. Prediction using Weighted Least Squares

VRPN VRPP VRPPE

β̂v,t 1M-OLS 1M-WLS 1M-OLS 1M-WLS 1M-OLS 1M-WLS
(1) (2) (3) (4) (5) (6) (7) (8) (9)

VRPt 3.697∗ 3.276∗ 3.096∗ 3.279∗∗ 2.556 2.376 4.922∗∗∗ 0.380∗∗ 3.472∗∗

(1.91) (1.76) (1.68) (2.23) (1.51) (1.41) (3.13) (2.26) (2.01)
VRPt ×βv,t −0.052∗∗ −0.626∗∗ −0.663∗∗∗ −0.740∗∗∗ −0.497∗∗ −0.579∗∗

(2.31) (2.64) (2.75) (3.06) (2.23) (2.55)

Adj-R2 0.014 0.027 0.033 0.012 0.038 0.038 0.034 0.046 0.050

*** denotes significance at 1%, ** at 5%, and * at 10% level.
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Table 7: Conditional In-sample Predictive Performance

This table summarizes the in-sample R2s and t-statistics of monthly predictive regressions of one-month
market returns (Rm,t+1) on the VRP for split samples. The regression is:

Rm,t+1 = β0p + βpV RPt + εt+1. (38)

Each month in the sample (1990-2016) is classified as a high, medium or a low month depending on whether
the one-month contemporaneous correlation is greater or less than the historical terciles evaluated using data
available up to that point. The contemporaneous correlation is defined as the correlation between daily
market returns (Rm,τ ) and variance innovations (RVτ − Eτ−1[RVτ ]). ‘High’ contains samples in which the
correlations are highly negative. The t-statistics, reported in parentheses, are adjusted for heteroscedasticity
(one-month returns).

Classification

High Medium Low High-Low
Number of month 113 103 108

VRPN In-sample R2 0.117∗∗∗ 0.047∗∗ 0.004 0.113
(3.83) (2.26) (0.69)

Predictive beta (βp) 11.441 5.054 1.427

VRPP In-sample R2 0.131∗∗∗ −0.003 0.007 0.124
(4.11) (−0.12) (0.78)

Predictive beta (βp) 10.017 −0.282 1.580

VRPPE In-sample R2 0.179∗∗∗ 0.001 0.027 0.152
(4.91) (0.36) (0.71)

Predictive beta (βp) 8.743 3.936 0.026

*** denotes significance at 1%, ** at 5%, and * at 10% level.
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Table 8: Alternative VRP Estimates

This table replicates Table 2- Table 3 for three additional VRP measures. VRPBTZ is from Bollerslev et al.
(2009), and VRPBH is from Bekaert and Hoerova (2014) estimated at the end of the month. Finally, VRPVXO

denotes the case in which both option-implied variance (VXO) and high frequency realized variance is
estimated using the S&P 100 Index.

Panel A. OOS Performance of the Traditional Approach (New Measures)

VRPBTZ VRPBH VRPVXO,N VRPVXO,P VRPVXO,PE

1993-2016 1993-2016 1991-2016 1993-2016 1991-2016 1993-2016 1991-2016 1993-2016

OOS-R2 0.037 0.024 −0.015 −0.009 −0.010 −0.007 0.011 0.016
Wald 2.176 0.367 0.233 0.082 0.233 0.082 0.186 0.339
p-value (0.140) (0.545) (0.629) (0.775) (0.629) (0.775) (0.666) (0.561)

Panel B. OOS Performance of the Contemporaneous Beta Approach

Statistics VRPBTZ VRPBH VRPVXO,N VRPVXO,P VRPVXO,PE

1993-2016 1993-2016 1991-2016 1993-2016 1991-2016 1993-2016 1991-2016 1993-2016

1-month OOS-R2 0.050 0.073 0.068 0.070 0.083 0.086 0.084 0.087
WLS Wald 2.245 3.877 5.993 5.723 9.145 8.781 6.906 6.666

p-value (0.134) (0.049) (0.014) (0.017) (0.002) (0.003) (0.009) (0.010)

1-month OOS-R2 0.041 0.054 0.055 0.057 0.071 0.073 0.072 0.073
OLS Wald 2.907 2.863 4.098 3.960 6.885 6.602 4.982 4.619

p-value (0.088) (0.091) (0.043) (0.047) (0.009) (0.010) (0.026) (0.032)

3-month OOS-R2 0.060 0.072 0.059 0.064 0.046 0.049 0.053 0.054
WLS Wald 4.130 4.951 10.298 10.890 3.404 3.568 3.063 2.979

p-value (0.042) (0.026) (0.001) (0.001) (0.065) (0.059) (0.080) (0.084)

3-month OOS-R2 0.052 0.057 0.049 0.053 0.041 0.044 0.047 0.049
OLS Wald 4.574 3.997 7.637 8.120 2.898 3.034 2.649 2.516

p-value (0.032) (0.046) (0.006) (0.004) (0.089) (0.082) (0.104) (0.113)

C. Conditional OOS Performance (Traditional Approach, 1993-2016)

OOS-R2

VRPBTZ VRPBH VRPVXO,N VRPVXO,P VRPVXO,PE

C-1. 1-Month Correlations

High 0.060 0.129 0.054 0.062 0.083
Medium 0.043 −0.057 0.045 0.011 −0.001
Low 0.002 −0.002 −0.124 −0.101 −0.049
High-Low 0.058 0.131 0.178 0.163 0.131

C-2. 3-Month Correlations
High 0.135 0.121 0.075 0.036 0.078
Medium 0.060 0.034 0.034 0.039 0.027
Low −0.041 −0.040 −0.121 −0.089 −0.047
High-Low 0.176 0.161 0.196 0.125 0.125
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Table 9: Alternative Specifications

This table replicates Table 2 for several alternative specifications. First, for the traditional approach, weighted
least squares is used in the first step regressions. Second, a shorter estimation period of five or seven years is
used for the first step regressions. Then, the first seven years of data is dropped from the analysis. In Panel B,
the results of the contemporaneous beta approach are provided after dropping the first seven years.

VRPN VRPP VRPPE

A. The Traditional Approach

Weighted Least Squares OOS-R2 0.016 0.005 0.050
1993-2016 Wald 0.319 0.026 1.806

p-value (0.572) (0.872) (0.179)

5-year Rolling OOS-R2 -0.046 −0.039 0.015
1993-2016 Wald 0.805 0.664 0.001

p-value (0.370) (0.415) (0.978)

7-year Rolling OOS-R2 -0.030 −0.029 0.018
1993-2016 Wald 0.053 0.144 0.563

p-value (0.818) (0.704) (0.453)

Expanding Window OOS-R2 0.015 0.005 0.057
1998-2016 Wald 0.112 0.016 1.488

p-value (0.738) (0.899) (0.223)

B. The Contemporaneous Beta Approach (No Intercept, 1998-2016)

1-month OOS-R2 0.073 0.090 0.093
WLS Wald 5.309 8.728 5.621

p-value (0.021) (0.003) (0.018)

1-month OOS-R2 0.066 0.083 0.085
OLS Wald 4.736 8.728 6.158

p-value (0.030) (0.003) (0.013)
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